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The MAJORANA DEMONSTRATOR
Funded by DOE Office of Nuclear Physics, NSF Particle Astrophysics, NSF Nuclear Physics  
with additional contributions from international collaborators.

Goals:  - Demonstrate backgrounds low enough to justify building a tonne scale experiment. 
- Establish feasibility to construct & field modular arrays of Ge detectors. 
- Searches for additional physics beyond the standard model.

Located underground at 4850’ Sanford Underground Research Facility
Background Goal in the 0νββ peak region of interest (4 keV at 2039 keV)   
    3 counts/ROI/t/y (after analysis cuts)  Assay U.L. currently ≤ 3.5  
    scales to 1 count/ROI/t/y for a tonne experiment
44-kg of Ge detectors

- 29 kg of 87% enriched 76Ge crystals
- 15 kg of natGe
- Detector Technology: P-type, point-contact.
2 independent cryostats
- ultra-clean, electroformed Cu
- 22 kg of detectors per cryostat
- naturally scalable
Compact Shield
- low-background passive Cu and Pb  

shield with active muon veto
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MAJORANA DEMONSTRATOR Implementation
                       Three Steps
Prototype cryostat:  7.0 kg (10) natGe 

Module 1:            16.8 kg (20) enrGe
          5.7 kg (9) natGe

Module 2:           12.8 kg (15) enrGe
           9.4 kg (14) natGe

3

June 2014-June 2015

May–Oct. 2015, 
Upgraded: Fall 2016
Jan 2016 - present

May 2016

In shield Operation
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MAJORANA Underground Laboratory
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J. Detwiler

Note : Region of 
Interest (ROI) 
can be single or 
multidimensional 
(E, spatial, …)

Assumes 75% efficiency based on GERDA Phase I. Enrichment level is accounted for in the exposure

Inverted Ordering (IO) 

Minimum IO mββ=18.3 meV, 
taken from using the 
PDG2013 central values of 
the oscillation parameters, 
and the most pessimistic NME 
for the corresponding isotope 
among QRPA, SM, IBM, PHFB, 
and EDF

100 kg-year exposure
3.5 counts/ROI-t-y
T1/2 = 1.2 x 1026  y
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3σ Discovery vs. Exposure for 76Ge
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J. Detwiler

Note : Region of 
Interest (ROI) 
can be single or 
multidimensional 
(E, spatial, …)

Inverted Ordering (IO) 

Minimum IO mββ=18.3 meV, 
taken from using the 
PDG2013 central values of 
the oscillation parameters, 
and the most pessimistic NME 
for the corresponding isotope 
among QRPA, SM, IBM, PHFB, 
and EDF

Assumes 75% efficiency based on GERDA Phase I. Enrichment level is accounted for in the exposure

100 kg-year exposure
3.5 counts/ROI-t-y
T1/2 = 1.2 x 1026  y
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DEMONSTRATOR Background Model
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P-type Point Contact Detectors
Ultra-low background rate requires 
a pulse shape analysis (PSA) 
rejection of multi-site gamma events

P-type Point-Contact (PPC) 
detectors

- No deep hole; small point-like 
central contact

- Length is shorter than standard 
coaxial detector

- Simple, cost-effective, low 
background

- Localized weighting potential 
gives excellent multi-site 
rejection

- Low capacitance (~ 1 pF) gives 
superb resolution at low energies

Rising edge “stretched” in time 
⇒improved PSA

Hole vdrift [mm/ns]  
with paths and 

isochrones
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MAJORANA Detector Choice
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MAJORANA DEMONSTRATOR

Natural Detectors 
•  CANBERRA modified BEGe
•  ~ 70 mm x 30 mm
•  ~ 650 g each
•  Made in Meriden, CT, USA; different 

from the Olen-type used in GERDA

Enriched Detectors 
•  ORTEC PPC
•  ~ 70 mm x 50 mm
•  ~ 900 g each
•  All production (zone refinement, 

crystal pull and diode production) 
in Oak Ridge, TN, USA

•  Production began in Nov. 2012
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Delivered enrGe Detectors
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Material Purity
The detector

- Ge metal zone refined and pulled into a 
crystal that provides purification

- Limit above-ground exposure to prevent 
cosmic activation

- Deep underground operation
Detector mounts

- Ultra-pure plastic and electro-formed Cu
- Low mass design
- Custom cable connectors and front-end 

boards
- Carefully selected plastics (PTFE, PEEK, 

Vespel)
- Fine Cu coaxial cables

Cryostat and inner shielding
- Underground electro-formed Cu

11
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MAJORANA Electroformed Cu
MAJORANA operated 10 baths at the Temporary Clean Room (TCR) facility at 
the 4850’ level and 6 baths at a shallow UG site at PNNL. All copper was 
machined at the Davis campus.
The electroforming of copper for the DEMONSTRATOR successfully completed 
in May of 2015 but we continued to operate baths in the TCR for additional 
material until March 2016. 

- 2654 kg of electroformed copper produced.
- 1196 kg was installed in the Demonstrator.

12

Electroforming Baths in TCR Inspection of EF copper on 
mandrels

EF copper after turning 
on lathe

Th decay chain (ave) ≤ 0.1 μBq/kg
U decay chain (ave)  ≤ 0.1 μBq/kg
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Cu Production and Machining
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Underground Cu electro-forming 
laboratory produces all of the ultra-
pure inner Cu
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Cu Production and Machining
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Cu machining in an underground clean 
room machine shop complete April 2016

All parts are uniquely tracked through machining, 
cleaning, and assembly by a custom-built database. 
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Cu Part Cleaning
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Cleaning of Cu parts by acid 
etching and passivation



Meeting on the Next Generation 76Ge Experiment - April 2016V. E. Guiseppe

Assembled Detector Unit and String
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Electroformed 
Copper 

PTFE

PFA + fine Cu  
coaxial cable

String Assembly

Front-End Elec.
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Detector Readout Components
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Fine Cu coaxial cable and 
clean connectors

Spring Clip

Shipping 
Restraint Feedback Resistor

FET

Epoxy

Connectors reside on top of cold 
plate.
In-house machined from Vespel. 
Axon’ pico co-ax cable.
Low background solder and flux.

Custom low mass front-end boards 
Clean Au+Ti traces on fused silica

Amorphous Ge resistor
FET mounted with silver epoxy

EFCu + low-BG Sn contact pin
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Glovebox Assembly
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Detector Units

SDU Design
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Dimensional Measurement

UG Detector 
Assembly

- All detector related 
assembly performed in N2 
purged gloveboxes.

- All detectors’ dimensions 
recorded by optical reader.



Meeting on the Next Generation 76Ge Experiment - April 2016V. E. Guiseppe

Detector Units and Strings
Detector units and strings built inside a glovebox with a radon-reduced, 
dry N2 environment

20
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Detector Module
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Cryostat mated to the 
glovebox for string 

installation

- A self contained vacuum and cryogenic vessel 
- Contains a portion of the shielding
- Can be transported for assembly and 

deployment
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Detector Module
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First string of enrGe in Cryostat 1
Cabling on top of cold plate
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Detector Module
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Loading of enrGe in Cryostat 2
Loading of enrGe in Cryostat 1



Pb Bricks

Poly ShieldRadon 
Enclosure

Muon Veto 
Panels

Inner 
Cu 

Shield

Outer 
Cu 

Shield
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Passive Shielding and Muon Veto

24

Pb and outer Cu shield installed Module deployment
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Passive Shielding and Muon Veto
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Muon panels

Module deployment
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The Inner Copper Shield
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- Extensive time to electro-form the Cu parts.
- String parts higher priority for machining.
- Hence installed after shield constructed.
- Expect x10 reduction in background from 

other shield materials.



Meeting on the Next Generation 76Ge Experiment - April 2016V. E. Guiseppe

The MAJORANA Calibration system
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- Line sources are deployed from outside the shielding within a tube that 
surrounds each cryostat.

- 228Th (11.6 kBq) and 60Co (6.3kBq) sources available.
- Calibration tube is externally purged during calibration.
- Several sensors monitor the position of the source and the status of the 

system.
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228Th Calibration Spectrum in Module 1 (DS0)
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Ge Detector PSD Performance in Module 1 (DS1)
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Data Set Parameters

Data Set Prototype Module Module 1 
no inner shield

Module 1 
with inner shield

mnemonic DS-PM DS0 DS1

Operation Dates 9/18/14 – 4/17/15 6/26/15 – 10/7/15 12/31/15 – 4/14/16*

Run Time 211 d 103.15 d 104.68 d

Live Time 138.22 d 47.73 d 54.70 d

Fraction Live 0.65 0.46 0.52

Enriched Ge 
Exposure

0 kg d 510.2±1.1 kg d 650.41±0.30 kg d

Natural Ge 
Exposure

701.7 kg d 186.6±0.6 kg d 91.35±0.15 kg d

30

*Data taking ongoing
Dry-run of analysis and data production

Found known backgrounds and addressed 
2 observed backgrounds  
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Module 1 Data Set Duty Cycles
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DS0 (days) 
No inner shield 

June 26, – Oct. 7, 2015

DS1 (days) 
with inner shield 

Dec. 31, 2015 – Apr. 14, 2016*

Total 103.15 104.68

Total acquired 88.04 97.49
Physics 47.73 54.70
High radon 11.76 7.32
Disruptive 
Commissioning 
tests 

13.10 28.61

Calibration 15.44 6.86
Down time 15.11 7.19

*Data taking ongoing

Physics

High Rn
Disruptive

Calibration
Down

Physics

High Rn

Disruptive

Calibration
Down

Break for Module 1 planned improvements
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Module 1 Improvements – Fall 2015
Operated in-shield June 2015 - Oct. 2015

- Partial shielding and some high-background components

During Oct.- Dec. 2015 performed planned improvements to Module 1. 
- Installed inner Cu shield: Decrease background contribution from outer 

Cu shield and Pb by factor of about 10.
- Replaced Kalrez O-rings in cryostat: These o-rings contributed to our 

background. Replaced with PTFE.
Kalrez: Th ~ 2000-4000 ppt. Expect about 80 c/ROI t y.
PTFE sheet: significant reduction in BG compared to Kalrez.

Crossarm Shielding: Added to decrease background contributions from 
electronics-breakout box region.

Repaired non-operating detectors and upgrade cables: 
- Repairing non-operating detectors (cable connection, HV connection, 

LMFE replacement, …)
32
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Delayed Charge Recovery and Alphas

33

Slow drift of charges along 
passivated surface results in  
very slow signal component 

•  Unexpected background found in commissioning run (1700-3500 keV). 
•  Identified as arising from alpha particles impinging on passivated surface. 
•  Results in prompt collection of some energy, plus very slow collection of remainder. 
•  Produces a distinctive waveform resulting in a high efficiency cut. 

Example pole-zero  
corrected waveforms 

M
JD

F-
20

16
-0

4-
06

-0
01

-R
1 

- Alpha background response observed in Module 1  commissioning (DS0)
- Identified as arising from alpha particles impinging on passivated surface

- Results in prompt collection of some energy, plus very slow collection of 
remainder

- Enables a powerful PSA rejection of alpha events
- “Delayed Charge Recovery” parameter related to slope of tail
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Rn Simulation Compared to Data

34
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Module 1 String Layout
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626 g
779 g

626 g
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P#####L ORTEC PPC, enriched, detector mass 16.8 kg 
B#### Canberra BEGe, natural, detector mass 5.7 kg 
29 total detectors

2
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Module 1 Detector Status
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6/26/15 – 10/7/15 12/31/15 – Present

mnemonic DS0 DS1

Total Number of Detectors 
Installed

29 29

Enriched Detectors 
Num. used in Analysis

20  
14

20 
15

Natural Detectors 
Num. used in Analysis

9  
7 

9 
3

Active Natural Mass 3.9 kg of 5.7 kg 1.7 kg of 5.7 kg

Active Enriched Mass 10.7 kg of 16.8 kg 11.9 kg of 16.8 kg

Unbiased Detectors   - Lost connections, leakage current, noisy 
response, HV instability
May re-work Module 1 as Module 2 commissioning progresses
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The MAJORANA Blindness Plan
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Minimum exposure to 
reach 2.1x1025 yr half-life 

limit as a function of 
background.

- Data pre-scaling scheme, 25% open. 31 h open followed by 93 h blind.
- If background is near goal, require 15-20 kg yr  of exposure to reach present half-

life limit in Ge. Hence plan to remove blindness after 15 kg yr.
- Specialized physics analyses (dark matter, e.g.) will have different blind exposure 

requirements based on physics goals. A certain region of the spectrum may have 
blindness removed at a lower exposure, for example.
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MJD Summary
- Assembly and construction concluding at Sanford Davis Campus laboratory.
- Based on assays, material backgrounds projected to meet cleanliness goals.
- Successful reduction and refinement of enrGe with 98% yield. 
- Electroformed copper completed at SURF and PNNL.
- AMTEK (ORTEC) produced 35 detectors, 29.7 kg, from the enrGe. 
- All detectors underground at SURF.
- Shield nearly complete. Some poly layers are not yet installed
- Module 1, in-shield running from June – Sept. 2015.  Final installations complete and re-

installed in shield Dec. 2015. Module 1 operating in shield
- Module 2 construction and assembly proceeding.  Scheduled to start commissioning in May 

2016.
- Predict T1/2 = 1.2 x 1026  y (90% Sensitivity) and T1/2 = 1.2 x 1026  y (3σ Discovery)

- MJD 100 kg-year at 3.5 counts/ROI-t-y

38
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The MAJORANA Collaboration

This material is based upon work supported by the U.S. Department of Energy, Office of 
Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of 
the National Science Foundation, and the Sanford Underground Research Facility. 
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Backup Slides
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HV Connection Updates

Plan to add clamp nut and spring washer.
42
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email to send Group Résumés slides

guiseppe@sc.edu

mailto:guiseppe@sc.edu

