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Outline

Advances 1n nuclear forces and nuclear structure

Progress 1n nuclear matrix elements for
neutrinoless double beta decay

Perspectives



Chiral effective field theory for nuclear forces

: 1
Separation of scales: low momenta — = Q < Apbreakdown scale ~500 MeV

A
NN 3N 4N o . .
g S Limited resolution at low energies,

Lo 0(%) - — —  can expand in powers (Q/Ay)"

* LO, n=0 - leading order,
>< |:’f,ﬁ: | NLO, n=2 - next-to-leading order,...
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| l H expansion parameter ~ 1/3
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Weinberg, van Kolck, Kaplan, Savage, Wise, Bernard, Epelbaum, Kaiser, Machleidt, Meissner,...



Chiral effective field theory for nuclear forces

: 1
Separation of scales: low momenta — = Q < Apbreakdown scale ~500 MeV

NN 3N 4N A
s B ol de long-range pion physics

LO 0(%’) _____ — —

S

NLO O (%)  —  —  systematic: can work to desired
II [ accuracy and obtain error estimates

N’LO O (%) #ii#:
I

NSLO O (%) :

few short-range couplings,
- fit to experiment once

- consistent electroweak interactions
and matching to lattice QCD

new developments in power counting,
: uncertainty quantification,

+ o+ L+

‘ ‘ optimization,... Ektrm et al., Furnstahl et al.

Weinberg, van Kolck, Kaplan, Savage, Wise, Bernard, Epelbaum, Kaiser, Machleidt, Meissner,...



Chiral effective field theory and many-body forces

: 1
Separation of scales: low momenta 1= Q < Apbreakdown scale ~500 MeV
JINNC AN AN

consistent NN-3N-4N interactions

Lo 0<‘3> % | o o 3N,4N: 2 new couplings to N°LO
%} } + no new couplings for neutrons

| : C1, €3, C4 Cp CE
N’LO O (%’) }:f;#’: / c; from N and NN
g ;?g Cp» €y fit to light nuclei only
derlved in (199 /2002):
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HETY (20115... (zooé)...

NLO (’)

Weinberg, van Kolck, Kaplan, Savage, Wise, Bernard, Epelbaum, Kaiser, Machleidt, Meissner,...



Nucle1 bound by strong interactions

doi:10.1038/nature11188

The limits of the nuclear landscape

Jochen Erler'?, Noah Birge', Markus Kortelainen*?, Witold Nazarewicz"**, Erik Olsen?, Alexander M. Perhac' & Mario Stoitsov' %}
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How does the nuclear chart emerge from quantum chromodynamics?

Lattice QCD and effective field theories of QCD



Progress 1n ab 1nitio calculations of nuclei
dramatic progress in last 5 years to access nuclei up to A ~ 50
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Ab 1nitio calculations of neutron-rich oxygen 1sotopes

impact of 3N forces key for neutron dripline otsuka et al., PRL (2010)

based on same
NN-+3N interactions
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using different many-body methods:
Coupled Cluster thGOI’Y/CCEI Hagen et al., PRL (2012), Jansen et al., PRL (2014)

Multi-Reference In-Medium SRG and [T-NCSM Heregert et al., PRL (2013)
Self-Consistent Green’s Function methods Cipollone et al., PRL (2013)



Progress 1n ab 1nitio calculations of nuclei
dramatic progress in last 5 years to access nuclei up to A ~ 50
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Ab 1nitio calculations going open shell

In-Medium SRG to derive nonperturbative shell-model interactions
Tsukiyama, Bogner, AS, PRC (2012), Bogner et al., PRL (2014)

Coupled Cluster for effective interactions (CCEI) Jansen et al., PRL (2014)
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Ab 1nitio calculations going open shell

In-Medium SRG to derive nonperturbative shell-model interactions
Tsukiyama, Bogner, AS, PRC (2012), Bogner et al., PRL (2014)

Spectrum of 24F Caceres et al., PRC (2015)
vs. new GANIL experiment
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Ab 1nitio calculations going open shell

In-Medium SRG to derive nonperturbative shell-model interactions
Tsukiyama, Bogner, AS, PRC (2012), Bogner et al., PRL (2014)

Spectrum of 2*F cCaceres etal,, PRC 2015)  Deformed nuclei Stroberg et al., 1511.02802

vs. new GANIL experiment CCEI Jansen et al., arXiv: 1511.00757
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Neutron-rich calcium isotopes
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Frontier of ab initio calculations at A~50

doi:10.1038/naturel2226

Masses of exotic calcium isotopes pin down

nuclear forces

F. Wienholtz!, D. Beck?, K. Blaum?, Ch. Borgmann?, M. Breitenfeldt®, R. B. Cakirli>°, S. George?, F. Herfurth?, J. D. Holt®7,
M. Kowalska®, S. Kreim®®, D. Lunney®, V. Manea®, J. Menéndez®’, D. Neidherr?, M. Rosenbusch!, L. Schweikhard?,
A. Schwenk”®, J. Simonis®’, J. Stanja'®, R. N. Wolf' & K. Zuber'°

53.54Ca masses measured at
ISOLTRAP/CERN using new
MR-TOF mass spectrometer

excellent agreement with
theoretical NN+3N prediction

suggests N=32 shell closure
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ARTICLES

p hySICS PUBLISHED ONLINE: 8 FEBRUARY 2016 | DOI: 10.1038/NPHYS3645

Unexpectedly large charge radii of neutron-rich
calcium isotopes

R. F. Garcia Ruiz'*, M. L. Bissell'?, K. Blaum?, A. Ekstrom*®, N. Frommgen®, G. Hagen*, M. Hammen®,
K. Hebeler’?, J. D. Holt®, G. R. Jansen*®, M. Kowalska'®, K. Kreim3, W. Nazarewicz*""'?, R, Neugart>5,
G. Neyens', W. Nértershiuser®’, T. Papenbrock®®, J. Papuga’, A. Schwenk3’2, J. Simonis’?8,

K. A. Wendt*® and D. T. Yordanov3"3
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Neutron skin of 43Ca

nature

p ySICS PUBLISHED ONLINE: 2 NOVEMBER 2015 | DOI: 10.1038/NPHYS3529

ARTICLES

Neutron and weak-charge distributions of the
48Ca nucleus

G. Hagen"?*, A. Ekstrém'?, C. Forssén'?3, G. R. Jansen'?, W. Nazarewicz'*>, T. Papenbrock'?,
K. A. Wendt"?, S. Bacca®’, N. Barnea?, B. Carlsson?, C. Drischler®'°, K. Hebeler®'°,
M. Hjorth-Jensen*", M. Miorelli®'?, G. Orlandini™', A. Schwenk®'® and J. Simonis®'"
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Neutron and weak-charge distributions of **Ca

ab 1nitio calculations lead to charge
distributions consistent with experiment

predict small neutron skin,
dipole polarizability, and
weak formfactor
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Outline

Advances 1n nuclear forces and nuclear structure

* opens up ab 1nitio calculations of OvB[3 nuclei
* theoretical uncertainties from chiral EFT

Progress 1n nuclear matrix elements for
neutrinoless double beta decay

Perspectives



Outline

Advances 1n nuclear forces and nuclear structure

Progress 1n nuclear matrix elements for
neutrinoless double beta decay

* state-of-the-art calculations (shell model)
based on NN interactions + corrections
to compensate for not including 3N forces

* calculation of OvBf operator in chiral EFT

Perspectives



Range of nuclear matrix elements

different NME calculations result 1n large spread
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Can we understand the differences in nuclear structure?



Nuclear structure of Ov[33 nuclel

shell model calculations: valence spaces and interactions successfully
tested with experiment (spectra, occupancies)! largest spaces used

Experimental occupancies are well described!

Neutron Vacancies Proton Occupancies Calculations USing
state-of-the-art
ISM interactions
and valence
spaces

(NATHAN code)
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ISM(RG)

EXP

z
&)
S
=
@

ISM(GCN)

ISM(RG)

ISM(GCN)

MOVBB —

2.81 (GCN)
3.26 (RG)

76Ge 7SSe 76Ge 7SSe

Experiment: Schiffer et al. PRL100 112501(2009), Kay et al. PRC79 021301(2009)
Theory: JM, Caurier, Nowacki, Poves PRC80 048501 (2009)

Other methods do not demonstrate that structure 1s well reproduced



An example from WIMP-nucleus scattering

shell model calculation based on the same interactions as for Ovp3f3
very good agreement for spectra, ordering and grouping well reproduced
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An example from WIMP-nucleus scattering

shell model calculation based on the same interactions as for Ovp3f3
very good agreement for spectra, ordering and grouping well reproduced
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Diffterences of nuclear matrix elements

NME differ by factor ~ 2 in Ge (range is not good measure of theo. uncertainty)
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Diffterences of nuclear matrix elements

NME differ by factor ~ 2 in Ge (range is not good measure of theo. uncertainty)
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Fang et al., PRC (2010, 2011)
Kortelainen, Suhonen, PRC (2007)
Mustonen, Engel, PRC (2013)

IBM: Barea et al., PRC (2013)
PHFB: Rath et al., PRC (2013)

NSM:

Menéndez et al., NPA (2008),
JPCS (2011)

Neascu, Horo1, PRC (2015)

largest difference: shell model (NSM) smaller than “mean-field results”

Can we trace this to missing correlations?

QRPA, PHFB,



Pairing part of nuclear interactions

T=1, J=0 interactions included 1n all calculations,
T=0, J=1 channel only 1n shell model

What about correlations due to T=0, J=I interactions (np pairs)?



Pairing part of nuclear interactions

T=1, J=0 interactions included 1n all calculations,

T=0, J=1 channel only 1n shell model

What about correlations due to T=0, J=I interactions (np pairs)?

consider Ca chain, without T=0 channel NMEs are factor ~ 2 smaller
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Pairing part of nuclear interactions

T=1, J=0 interactions included 1n all calculations,
T=0, J=1 channel only 1n shell model

What about correlations due to T=0, J=I interactions (np pairs)?

np pairing correlations in EDF-GCM also reduce NMEs

6 8 10
¢ = pn pairing amplitude

Hinohara, Engel (2014)



Outline

Advances 1n nuclear forces and nuclear structure

Progress 1n nuclear matrix elements for
neutrinoless double beta decay

* state-of-the-art calculations (shell model)
based on NN interactions + corrections
to compensate for not including 3N forces

* calculation of OvBf operator in chiral EFT

Perspectives



Chiral EFT for weak currents in nuclei

3N 4N one-body currents at Q° and Q?
¢ N | one-body currents

NLO (’) . i —

l"“l[._ N

.+ two-body currents at Q°

Lo Of similar to pheno currents

compared to Simkovic et al. (1999)




Chiral EFT currents and electromagnetic interactions

predicts consistent electromagnetic 1+2-body currents

GFMC calculations of magnetic moments 1n light nuclei pastore et al. (2012)
2-body currents (meson-exchange currents=MEC) are key!
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Electroweak interactions and 3N forces

- K = e K

€3, C4 C1,C3,C4 CD

3N couplings predict quenchmg of g,

needed 1n beta decay calculations
Menendez, Gazit, AS (2011)

1bc

comparable to empirical g ~ 0.75
for B, 2vBP decays




Electroweak interactions and 3N forces

b

C3,C4

3N couplings predict quenchmg of g,

needed 1n beta decay calculations
Menendez, Gazit, AS (2011)

comparable to empirical g ~ 0.75
for B, 2vBP decays

predicts momentum dependence,

weaker quenching for larger p
Menendez, Gazit, AS (2011)

less quenching for OvBf for p ~m
—1
MOB5 g2 = (T10/'/266> x gh

T
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Chiral EFT and Ovpf decay

NME:s for Ovpf decay based on chiral EFT operator
Menendez, Gazit, AS (2011)
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modest quenching because Ovpf decay probes higher momentum transfer

two-body currents reduce NME by ~ 15% - 40%,
need to be included in all calculations of OvpBp decay



Chiral EFT and Ovpf decay

NME:s for Ovpf decay based on chiral EFT operator
Menendez, Gazit, AS (2011)
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Engel, Simkovic ,Vogel (2014)

modest quenching because Ovpf decay probes higher momentum transfer

two-body currents reduce NME by ~ 15% - 40%,
need to be included in all calculations of OvpBp decay



Summary and perspectives

chiral effective field theory
nuclear forces and electroweak/ WIMP/... interactions,
systematic for energies below ~300 MeV

advances in ab initio calculations up to A ~ 50
progress in understanding nuclear structure differences in NMEs

first calculation of OvBp operator in chiral EFT
less quenching compared to 3, 2vpp decays

Future perspectives: “Ca NME ab initio calculation as benchmark
ab 1nitio calculation of NMEs with consistent electroweak ints.

US-DOE topical collaboration iead by J. Engel (UNC), see CIPANP 1511.00074



