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e Muon flux simulations

* Evidence of cosmogenic neutron
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next generation
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FIG. 2. (Color online) Total fluxes of muons, pions. proton:
neutrons and helium nuclei as a function of atmospheric depth an
altitude above sea level. The lines are drawn to guide the eye.
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Underground labs for this study
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latitude

~Shutile Radary—
* STopegraphy Mrssron

The Mission to Map the World

use SRTM3 (mission from 2000, data released 2014):

resolution (x,y) : ~90m

whole world, except polar areas

http://lwww?2.jpl.nasa.gov/srtm/
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~Shutile Radary—
* STopegraphy Mrssron

The Mission to Map the World

" use SRTMS3 (mission from 2000, data released 2014):
" resolution (x,y) : ~ 90m
" whole world, except polar areas
" http://www2.jpl.nasa.gov/srtm/
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Compare the rock thickness of the different sites %
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Compare the rock thickness of the different sites | '3

1

-

—— Snolab

[
<

solid angle

—_
<
no

—— Surf4850
— Surf8000
Kamioka
- GranSasso
Frejus
—— Jinping

—3 il | | | L | M |
107, 5000 10000

15000 20000 _ 25000

thickness of rock(m)

| 4500

4500
4000, & JinPing Mountain 4000
[
= asool € z | 3500 -
3 3000, 5 > 3000 S
2 2500 > 3 | 2500 3
< =
e JinPing Tunnel | 2000
1500 1500
b | CJPL Site s
s00| 500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000
Length of the tunnel(m)

from http.//hep.tsinghua.edu.cn/CJPLNE/



Muon flux - start with surface muon flux
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Muon flux - start with surface muon flux P
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Muon flux - results for simulation with GEANT4
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* density uncertainty

simulations:
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Muon flux - results for simulation with GEANT4 9

laboratory

Frejus

Gran Sasso

Jinping

Kamioka

SNOLAB

SURF4850

SURF8000

depth

1263m

1400m

2400m

1000m

2070m

1478m

2438m

uncertainites:

flux
(v cm?s?)

Mei-Hime

* about 10% from surface flux

* density uncertainty

flux (u 10° TeV'cm2s)

B e R i e U G 4
S 933933 3 3
03\10301-&03[\3.14.

107°

o a =
g N
294
‘Hr

energy (GeV)

—— Snolab
—— Surf8000
I Kamioka (/100)
GranSasso (/10)
Frejus
s —— Jinping
—F\\I‘\I\\ll\ll‘\I\\l\\\l‘\l\\‘\\\\‘\l\\X103
0 50 100 150 200 250 300 350 40



Muon flux - results for simulation with GEANT4 ‘Q
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Muon flux - results for simulation with GEANT4
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dP/dcos 6

dP/ dcos 6

Muon flux - results for simulation with GEANT4
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dP/ dcos 6

Muon flux - results for simulation with GEANT4 %
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Muon flux - at the labs

Gran Sasso 1400m

Kamioka 1000m 148 or 170

SURF4850 1478m




Muon - angular distribution at the lab

- relative contribution to the muon flux
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Results

* We can reduce the muon induced background by a factor ~15

* Jinping is the deepest one of all the labs at the moment, but has some
disadvantages related to surface topography and surface muon flux

* density of the rock can heavily influence the results for the muon flux

o



Detection of events produced by cosmogenics

£o



Evidence of cosmogenic neutron (Pinghan Chu)

Isotope Reaction BQ Signature
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(76Ge(n, a)”?Zn, 7*Zn="°Ga+B+v) in single waveform



Evidence of cosmogenic neutron (Pinghan Chu)
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Evidence of cosmogenic neutron (Pinghan Chu)
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73Ga Decay

73Ga
Q= 1593 keV, t,, = 4.9 h

66.7 KeV 0.499 sec

13.3 keV 2.95 usec

Table of isotopes 1999 7SGe



Example of 4-Fold Correlated Event
P5D1
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in string 5
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Example of 4-Fold Correlated Event

P5D1

The top
detector
in string 5
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in string 5
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Results

« in total 3 Events so far in different MJD runs (Prototype/Module 1)
« using MeiHime neutron flux distribution to estimate event rate
==== gjves a rough number for the total neutron flux ====

(@30 MeV: ~1 10" n/cm?/st @50 MeV: ~0.4 10" n/cm™?/s?)
(very preliminary, needs life time, active mass, efficiency)
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Results

in total 3 Events so far in different MJD runs (Prototype/Module 1)
using MeiHime neutron flux distribution to estimate event rate
==== gjves a rough number for the total neutron flux ====
(@30 MeV: ~1 10" n/cm?/st @50 MeV: ~0.4 10" n/cm™?/s?)
(very preliminary, needs life time, active mass, efficiency)

use neutron cross section to estimate different isotope production
( see Physics Review C 82, 054610)

estimate background from these isotopes in ROI by a MC

==== 2 - 5Ct/t/yr ====

9



Results

in total 3 Events so far in different MJD runs (Prototype/Module 1)
using MeiHime neutron flux distribution to estimate event rate
==== gjves a rough number for the total neutron flux ====
(@30 MeV: ~1 10" n/cm?/s? @50 MeV: ~0.4 10" n/cm?/s?)

(very preliminary, needs life time, active mass, efficiency)

use neutron cross section to estimate different isotope production
( see Physics Review C 82, 054610)

estimate background from these isotopes in ROI by a MC

==== 2 - 5Ct/t/yr ====

Can we veto these ?
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cts/yr/ton in ROI

Time of beta delayed event in ROI (activation at t =0)
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