Monte Carlo Study and Data Analysis of the Neutron Multiplicity Meter

Yu Chen

Syracuse University

March 20, 2015

The Neutron Multiplicity Meter (NMM) Collaboration

With support from the NSF DUSEL R&D program & AARM, and thanks to the Minnesota Department of Natural Resources & the staff of the Soudan Underground Laboratory!

Yu Chen (Syracuse University)

The Neutron Multiplicity Meter (NMM)

The aim of the experiment is to measure the flux of high energy neutrons (> ~50 MeV) deep underground (Soudan at 2090 m.w.e).

Yu Chen (Syracuse University)

Candidate High-energy Neutron Event

- Relatively large coincident pulse heights from captured secondary neutrons created by high energy neutron
- Clustered pulse train due to $\sim 10 \ \mu s$ Gd capture time
- The experiment triggers if there are at least 5 coincident pulses within 60 μ s.

Gamma Background

- Relatively small coincident pulse heights
- Truly random timing
- Usually spread between tanks

Gamma Background Rejection

Pulse-height Discrimination

- Pulse height PDFs for neutron and photon, P_n(A), P_g(A)
- Likelihood for all-neutron and all-gamma events,

$$n\equiv\prod_i P_n(A_i),$$

$$g\equiv\prod_i P_g(A_i).$$

• Define a pulse-height likelihood function

$$L\equiv \frac{n}{n+g}.$$

Multiplicity-5 events from ~6 month data.

 Signal and background components from MCs based on individual neutron and gamma pulse-height PDFs from calibration data

•
$$\chi^2 = 82.8/94;$$

 Indicating the efficiency ~ 68% and the expected background leakage ~ 0.4 events for a cut at L > 0.99

Muon Background

Large dE/dx events (> 80% of all recorded events)

- Large initial pulse (from muon passing through tank) with after pulsing
- Large individual channel multiplicities, with some coincidences
- We currently remove muons by cutting events with any coincident pulse > 300 mV

Yu Chen (Syracuse University)

Muon Background

Clipping muons

- May or may not be accompanied by a large pulse
- Some will initiate hadronic showers in Pb and in water
- Low rate of a true indistinguishable background

Low Radioactivity Techniques Workshop

9

Full muon simulation

- Geant4-9.5 based package with Shielding physics list, and fully modeled detector in the Soudan cavern with 4 m Rock surrounded.
- Propagate 3.382 x 10⁷ muons (~217.36 live days) in the rock at 4 m above the cavern ceiling, sampled from the production of MC via MUSIC/MUSUN (Courtesy Angie Reisetter).
- This MC incorporates:
 - production of H.E. neutrons and hadronic showers
 - detector responses of H.E. neutrons, muon hits and secondary particles

Process and analysis of simulated data

Recorded Info:

- photon hits on PMT surfaces
- neutron captures
- particles crossing boundaries of water tanks, lead stack, and cavern

Process and analysis of simulated data: Pulse Generation

Yu Chen (Syracuse University)

Process and analysis of simulated data: Event Classification

- High-Energy Neutron Events: all pulses are neutron captures
- Contaminated Events: both neutron captures & other pulses
 - with muon induced pulse (e.g. clipping muons)
 - without muon induced pulse

 Use simulation to understand the content of multiplicity in the data from the detector

Process and analysis of simulated data: Event Selection Cuts

Use the same selection cuts as in real data analysis

- Multiplicity >= 5 (Multiplicity 5 in 60 µs trigger in the real data being used for comparison)
- Muon rejection cut: pulse height < 300 mV
- Neutron pulse-height likelihood cut: L > 0.99
 - with efficiencies: $\cdot \sim 77\%$ for H.E. neutron events
 - · ~ 90% for muon involved contaminated events

· ~ 82% for other particle involved contaminated events

Muon Rejection Cut

Before Muon Cut

- Efficiencies or Leakage:
 - ~ 80% for H.E. neutron events
 - 1.0% for muon involved contaminated events
 - 8.5% for other particle involved contaminated events

Comparison with Real Data

Multiplicity

• Excess in data compared to MC for higher multiplicities

Conclusions

- Very recent result shows excess in measured neutron flux over MC for high neutron multiplicities.
- Suggests neutron spectrum is harder than predicted by MC
- Or, muon rejection cut removes more events in MC than in data.
 - More careful checks to take.
- More and better data will clarify this discrepancy.
- ~ 158 live days of NMM-only data analyzed in this work, out of ~630 live days collected in total
- ~ 1 year (and ongoing) of data taken with the NMM correlated with Soudan all-cavern veto (See Anthony Villano's poster).

Backup Slides

Process and analysis of simulated data: Pulse Tagging/Classification

Stats of muon simulation

	All detected	N >= 5	Muon rej. cut PH < 300 mV	L > 0.99
H.E. Neutron Events	6204	101	81	62
Muon Involved Contaminated Events	7755	1013	10	9
Other Involved Contaminated Events	6341	1251	106	87
Muon Involved Backgrounds	123730	0	0	0
Other Involved Backgrounds	76353	0	0	0
Total	220383	2365	197	158

Yu Chen (Syracuse University) Low

Muon Rejection Cut

Fast Neutron Events

- Efficiencies or Leakage:
 - ~ 80% for H.E. neutron events
 - 1.0% for muon involved contaminated events
 - 8.5% for other particle involved contaminated events

Other Involved Contaminated Events

Muon Involved Contaminated Events

Yu Chen (Syracuse University)

Likelihood distribution

Yu Chen (Syracuse University) Low Radioactivi