

# Low-background techniques applied in the BOREXINO experiment

Grzegorz Zuzel Jagiellonian University in Cracow, Poland

on behalf of the BOREXINO Collaboration

### Outline



- BOREXINO
- BOREXINO radio-purity
- Background mitigation techniques
- Summary

### **BOREXINO at LNGS**



BOREXINO BX radio-purity Bcg mitigation Summary



# **BOREXINO design**



BOREXINO

BX radio-purity

Bcg mitigation

Summary



# **BOREXINO design**



BOREXINO

BX radio-purity

Bcg mitigation

Summary



# **BOREXINO radio-purity**

### In a nutshell: the cleanest detector ever built



BOREXINO BX radio-purity

Bcg mitigation

Summary

| Isotope           | Specification<br>for LS            | Before purification                          | After purification                     |
|-------------------|------------------------------------|----------------------------------------------|----------------------------------------|
| <sup>238</sup> U  | $\leq 10^{-16} \text{ g/g}$        | $(5.3 \pm 0.5) \cdot 10^{-18} \text{ g/g}$   | $< 0.8 \cdot 10^{-19} \text{ g/g}$     |
| <sup>232</sup> Th | $\leq 10^{-16} \text{ g/g}$        | $(3.8 \pm 0.8) \cdot 10^{-18} \text{ g/g}$   | < 1.2·10 <sup>-18</sup> g/g            |
| $^{14}C/^{12}C$   | $\leq 10^{-18}$                    | $(2.69 \pm 0.06) \cdot 10^{-18} \text{ g/g}$ | unchanged                              |
| <sup>40</sup> K   | $\leq 10^{-18} \text{ g/g}$        | $\leq 0.4 \cdot 10^{-18} \text{ g/g}$        | Unchanged                              |
| <sup>85</sup> Kr  | $\leq 1 \text{ cpd}/100 \text{ t}$ | $(30 \pm 5) \text{ cpd}/100 \text{ t}$       | $\leq$ 5 cpd/100 t                     |
| <sup>39</sup> Ar  | $\leq 1 \text{ cpd}/100 \text{ t}$ | << <sup>85</sup> Kr                          | << <sup>85</sup> Kr                    |
| <sup>210</sup> Po | not specified                      | ~ (70) 1 dpd/100 t                           | unchanged                              |
| <sup>210</sup> Bi | not specified                      | (20) 70 dpd/100 t                            | $(20 \pm 5) \text{ cpd}/100 \text{ t}$ |

$$A_{Bx} = \sum (bcg \ ev.) \sim 30 \frac{cpd}{100 \ t} \sim \mathbf{10^{-9}} \frac{Bq}{kg}$$
$$A_{water} \sim \mathbf{10} \frac{Bq}{kg} \qquad \rightarrow activity \ reduction \ factor$$

# **Background mitigation techniques**



#### BOREXINO

- Bx radio-purity
- Bcg mitigation

Summary

- Graded shielding: traveling inward to the center, each component is protected from external radiation by the preceding one
- The radio-purity level is increasing towards the center
- Active (definition of FV, Čerenkov veto) and passive (PC buffer, water) suppression of external radiation
- Careful selection of construction materials and detector components with respect to content of radioactive isotopes, <sup>222</sup>Rn emanation and permeability
- Application of appropriate purification (liquids, gases) and cleaning techniques
- Preventing surface contamination

# **BOREXINO design**



BOREXINO

BX radio-purity

Bcg mitigation

Summary



## **CTF – testing the scintillator**



BOREXINO BX radio-purity

Bcg mitigation

Summary



CFT – 1: 1995 CTF – 2: 2000 CTF – 3: 2001-2003

- Phys. Lett. B, 422, 349 (1998)
- Astrop. Phys. 8(3), 141 (1998)
- NIM A406, 411 (1998)
- Physics Letters B 525, 29 (2002)
- Physics Letters B 563, 23 (2003)
- Physics Letters B 563, 37 (2003)
- JETP Lett. 78 No 5, 261 (2003)
- Eur. Phys. J. C 37, 421 (2004)
- Eur. Phys. J. C 47, 21 (2006)
- Phys. Rev. C 74, 045805 (2006)

 $\frac{^{14}C}{^{12}C} \sim 10^{-18}$ 

 $C_{U/Th} \sim 4 \times 10^{-16} \ g/g$ 

# **HPGe** spectroscopy

### GeMPIs at GS (3800 m w.e.)

- GeMPI I operational since 1997 (MPIK)
- GeMPI II built in 2004 (MCavern)
- GeMPI III constructed in 2007 (MPIK/LNGS)
- World's most sensitive spectrometers

### **GeMPI I:**

- Crystal: 2.2 kg,  $\varepsilon_r = 102 \%$
- Bcg. Index (0.1-2.7 MeV): 6840 cts/kg/year
- Sample chamber: 151

Sensitivity for U/Th:  $\sim 10 \mu Bq/kg$ 

Appl. Rad. Isot., 53 (2000) 191 Astrop. Phys. 18 (2002) 1





**BOREXINO** 

Bx radio-purity

Bcg mitigation

Summary

## **Survey of charcoals**



BOREXINO

Bx radio-purity

Bcg mitigation

Summary

| charcoal sample  | et                | spe               | cific activity | [Bq/kg]       | -                   |
|------------------|-------------------|-------------------|----------------|---------------|---------------------|
|                  | <sup>137</sup> Cs | <sup>228</sup> Th | 40K            | 226 Ra        | <sup>222</sup> Rn   |
| Silcarbon Sil40  | ≤ 1               | 28 ± 2            | 80 ± 3         | 28 ± 2        |                     |
| Silcarbon C46    | $1.2\pm0.2$       | $1.0 \pm 0.2$     | $380 \pm 15$   | $1.0 \pm 0.2$ |                     |
| Silcarbon K48    | ≤ 1               | $0.5 \pm 0.3$     | $10 \pm 0.7$   | $0.4 \pm 0.3$ | $0.28\pm0.05^{a}$   |
| Hydraffin CC8x30 | $1.3 \pm 0.2$     | $1.2 \pm 0.3$     | $275 \pm 14$   | $1.0 \pm 0.3$ | $0.33 \pm 0.02^{a}$ |
| Hydraffin UV43   | $3.4 \pm 0.2$     | $0.7 \pm 0.3$     | 1130 ± 44      | $0.5 \pm 0.3$ |                     |
| Model PCB616     | $5.3 \pm 0.3$     | $0.18\pm0.12$     | $120 \pm 7$    | $0.37\pm0.09$ |                     |
| Model 1193       | 0.6 ±0.1          | ≤ 0.3             | $360 \pm 20$   | $0.20\pm0.11$ |                     |
| Alcarbon 12x20   | $0.1\pm0.06$      | ≤ 0.3             | $590 \pm 24$   | ≤ 0.3         | 0.17 ±0.02ª         |
| Alcarbon 7x16    | $1.5 \pm 0.2$     | ≤ 0.4             | 690 ± 28       | ≤ 0.3         | $0.10 \pm 0.02^{a}$ |
| Activated Carbon | ≤ 0.5             | ≤ 0.5             | ≤2             | ≤ 0.3         | 0.0003±0.000        |

<sup>a</sup> Wetterauer, (1994)

## <sup>222</sup>Rn detection



- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- Developed for the GALLEX/GNO experiment
- Hand-made at MPI-K ( $\sim 1 \text{ cm}^3$  active volume)
- In case of  $^{222}$ Rn only  $\alpha$ -decays are detected
- 50 keV threshold
  - bcg: 0.1 2 cpd
  - total detection efficiency of  $\sim 1.5$
- Absolute detection limit  $\sim 30 \mu Bq$  (15 atoms)

## <sup>222</sup>Rn emanation



BOREXINO BX radio-purity Bcg mitigation

Summary



**Blanks:** 20 1 → 50 μBq 80 1 → 80 μBq

Absolute sensitivity ~100 µBq [50 atoms]

Appl. Rad. Isot. 53 (2000) 371

| Subsystem                                                                                | Sample                                                                                                                                                                                                                                                                                                                                                                                                          | Description                                                                                                                                                                                                                                                                                             | <sup>222</sup> Rn emanation rate<br>in saturation<br>< 60  mBq<br>$(45 \pm 8) \text{ mBq}$<br>$(24 \pm 5) \text{ mBq}$                                                                               |  |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pseudocumene storage area                                                                | Stainless steel (SS) vessel TK1<br>SS vessel TK2<br>SS vessel TK4                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{l} \sim 114 \ {\rm m}^3, \sim 140 \ {\rm m}^2 \\ \sim 114 \ {\rm m}^3, \sim 140 \ {\rm m}^2 \\ \sim 114 \ {\rm m}^3, \sim 140 \ {\rm m}^2 \end{array} $                                                                                                                                 |                                                                                                                                                                                                      |  |
| N <sub>2</sub> distribution system                                                       | Electrical heater<br>Pall Supercheminert particle filter<br>1.5 inch nitrogen distribution line                                                                                                                                                                                                                                                                                                                 | Code: AB1F0023EH11 $\sim 100~{\rm m}$ long with several ports                                                                                                                                                                                                                                           | $(0.92 \pm 0.29) \text{ mBq}$<br>$(0.34 \pm 0.13) \text{ mBq}$<br>$(0.47 \pm 0.13) \text{ mBq}$                                                                                                      |  |
| Scintillator purification plant<br>(All components are made<br>from electro-polished SS) | SS package for H <sub>2</sub> O extraction column<br>H <sub>2</sub> O extraction column containing 24 SS packages<br>N <sub>2</sub> sparging column containing 26 SS packages <sup>*</sup><br>Tank for H <sub>2</sub> O extraction of master solution (HT2)<br>Tank for storage of master solution (D330)<br>Buffer tank<br>Body of heat exchanger<br>Head of heat exchanger<br>Heat exchanger (body plus head) | 25 m <sup>2</sup> surface<br>Volume: 0.6 m <sup>3</sup> , Surface: 608 m <sup>2</sup><br>Volume: 0.2 m <sup>3</sup> , Surface: 280 m <sup>2</sup><br>Volume: 2.1 m <sup>3</sup><br>Volume: 1.58 m <sup>3</sup><br>measured before reassembly<br>measured before reassembly<br>measured after reassembly | < 0.12 mBq<br>(4.83 $\pm$ 0.70) mBq<br>(1.78 $\pm$ 0.21) mBq<br>(1.22 $\pm$ 0.37) mBq<br>(7.13 $\pm$ 1.15) mBq<br>< 0.34 mBq<br>(2.42 $\pm$ 0.17) mBq<br>(37.9 $\pm$ 2.1) mBq<br>(0.3 $\pm$ 0.1) mBq |  |
| Nylon inner vessel                                                                       | Bulk of sniamid nylon film<br>extruded by <i>MF-Folien</i><br>Surface of sniamid nylon film<br>extruded by <i>MF-Folien</i>                                                                                                                                                                                                                                                                                     | thickness: 125 $\mu$ m,<br>cleaned by <i>CleanFilm</i><br>thickness: 125 $\mu$ m,<br>cleaned by <i>CleanFilm</i>                                                                                                                                                                                        | $<21~\mu{\rm Bq/kg}$ $<0.8~\mu{\rm Bq/m^2}$                                                                                                                                                          |  |

\* Note that a SS package for the  $N_2$  sparging column is significantly smaller than a SS package for the  $H_2O$  extraction column.

Over 1000 entries in the DB!

Astroparticle Physics 18 (2002) 1 LRT 2004 proceedings, p. 141 – 149 Int. J. Mod. Phys. A29 (2014) 1442009

# <sup>222</sup>Rn emanation from charcoals

### CarboAct for LTA II



BOREXINO

Bx radio-purity

Bcg mitigation

Summary

| Sample<br>No. | Description                                                              | Sample<br>mass [kg] | Extraction<br>temp.* [°C] | Emanation<br>rate<br>[mBq/kg]   |
|---------------|--------------------------------------------------------------------------|---------------------|---------------------------|---------------------------------|
| 1             | First shipment (few kilograms), April                                    | 0.15                | 200                       | < 0.6                           |
| T             | 2001, big glass vial used for test                                       |                     | 22                        | not tested                      |
| C             | Second shipment ( $\cong$ 200 g), May 2001, big glass vial used for test | 0.17                | 220                       | $\textbf{1.5} \pm \textbf{0.5}$ |
| Z             |                                                                          |                     | 22                        | < 0.3                           |
| C             | Third shipment, July 2001 (1 Liter ≅                                     | 0.06                | 200                       | $1.7\pm0.8$                     |
| 3             | 170 g), small glass vial used for test                                   |                     | 22                        | < 0.6                           |
| Λ             | Feb. 2002 (58 g), small glass vial                                       |                     | 200                       | $\textbf{2.6} \pm \textbf{0.9}$ |
| 4             | used for test                                                            | 0.058               | 22                        | $\textbf{0.6} \pm \textbf{0.4}$ |

\*) During the Rn growth-in time samples were kept under normal conditions (room temp.  $\approx$  22 °C) and only short time before and during the extractions charcoal was heated up to the given temperature.

#### Carbosieve SIII (Kr removal from N<sub>2</sub>)

| Sample | Description | Sample    | Extraction  | Emanation                       |
|--------|-------------|-----------|-------------|---------------------------------|
| No.    |             | mass [kg] | temp.* [°C] | rate [mBq/kg]                   |
| 1      |             | -         | 20          | $\textbf{0.7} \pm \textbf{0.1}$ |

## <sup>222</sup>Rn/<sup>226</sup>Ra in water



BOREXINO Bx radio-purity

Bcg mitigation

Summary



### STRAW: System for the <sup>222</sup>Rn and <sup>226</sup>Ra Assay of Water

- Placed at the BOREXINO water plant
- <sup>222</sup>Rn extraction from 350 liters
- <sup>222</sup>Rn and <sup>226</sup>Ra measurements possible

<sup>222</sup>Rn detection limit: ~0.1 mBq/m<sup>3</sup>
<sup>226</sup>Ra detection limit: ~0.8 mBq/m<sup>3</sup>

#### Nucl. Instr. Meth. A 497 (2003) 407

| H <sub>2</sub> O flow<br>[m <sup>3</sup> /h] | H <sub>2</sub> O flow HPN <sub>2</sub> flow [m <sup>3</sup> /h] [kg/h] |               | C <sub>Ra</sub><br>[mBq/m <sup>3</sup> ] |  |
|----------------------------------------------|------------------------------------------------------------------------|---------------|------------------------------------------|--|
| 2                                            | 30                                                                     | $704 \pm 7$   | $1.2 \pm 0.5$                            |  |
| 1                                            | 20                                                                     | $247\pm 6$    | $3.8 \pm 0.7$                            |  |
| 1                                            | 30                                                                     | $186 \pm 5$   | $2.0 \pm 0.6$                            |  |
| Loop                                         | mode                                                                   | $3.0 \pm 0.4$ | $1.3 \pm 0.9$                            |  |

# <sup>222</sup>Rn in gases: MoREx



BOREXINO BX radio-purity Bcg mitigation

Summary



### Ar and Kr in nitrogen



BOREXINO BX radio-purity Bcg mitigation

Summary



# **BOREXINO nitrogen**

#### **Regular Purity Nitrogen:**

- Technical 4.0 quality, not purified
- Production rate up to 100 m3/h (STP)
- <sup>222</sup>Rn (30 70) μBq/m<sup>3</sup>
- Ar ~ 10ppm, Kr ~ 30 ppt

#### High Purity Nitrogen:

- <sup>222</sup>Rn adsorption on charcoal (LTA)
- Achieved concentration (0.30  $\pm$  0.09)  $\mu$ Bq/m<sup>3</sup>
- Production rate up to 100 m<sup>3</sup>/h (STP)
- Ar and Kr not removed



#### LAK (Low Ar and Kr) Nitrogen:

- Spec. Ar < 0.4 ppm, Kr < 0.2 ppt <sup>222</sup>Rn < 7 μBq/m<sup>3</sup>
- Purification by adsorption on different materials extensively studied (successfully!)
- Cooperation with companies on the nitrogen survey
- Tests of the nitrogen delivery chain

Nitrogen survey

| Nitrogen sample    | C <sub>Ar</sub> [ppm] | C <sub>Kr</sub> [ppt] |  |
|--------------------|-----------------------|-----------------------|--|
| MESSER (4.0)       | $200 \pm 30$          | $1680 \pm 240$        |  |
| Air Liquide (4.0)  | $11.0 \pm 1.3$        | $40 \pm 5$            |  |
| Linde AG, (7.0)    | $0.031\pm0.004$       | $2.9\pm0.4$           |  |
| SOL (6.0)          | $0.0063 \pm 0.0006$   | $0.04\pm0.01$         |  |
| Westfalen AG (6.0) | $0.00050 \pm 0.00008$ | $0.06\pm0.02$         |  |
| Goal (BOREXINO)    | < 0.4                 | < 0.2                 |  |

#### Tests of the delivery chains



| Supplier/setup                          | $C_{Rn}\left[\mu Bq/m^3\right]$ | C <sub>Ar</sub> [ppm] | C <sub>Kr</sub> [ppt] |
|-----------------------------------------|---------------------------------|-----------------------|-----------------------|
| Linde AG, 3-m <sup>3</sup> movable tank | 1.2                             | 0.018                 | 0.06                  |
| SOL, 16-m <sup>3</sup> tank             | 8                               | 0.012                 | 0.02                  |





BOREXINO Bx radio-purity

Bcg mitigation

Summary

## **BOREXINO LAK nitrogen**

LAK Nitrogen tank installed at Gran Sasso



# <sup>222</sup>Rn diffusion







# <sup>222</sup>Rn diffusion

### Results obtained for the 0.018 mm thick C38F film (BOREXINO)



| RH standard salt                   | RH in gas<br>phase (%) | Water amount in nylon, $M$ (%) | Diffusion<br>coefficient,<br>$D (cm^2/s)$ | Solubility,<br>S |
|------------------------------------|------------------------|--------------------------------|-------------------------------------------|------------------|
| Mg(ClO <sub>4</sub> ) <sub>2</sub> | $\sim 0$               | $\sim 0$                       | $(2.1\pm0.4) \times 10^{-12}$             | $4.5 \pm 0.7$    |
| $H_3PO_4 \cdot \frac{1}{2}H_2O$    | $9\pm1$                | $0.72 \pm 0.04$                | $(2.3\pm0.3)\times10^{-12}$               | $2.5 \pm 0.3$    |
| $LiCl_2 \cdot H_2O$                | $12 \pm 1$             | $0.87 \pm 0.04$                | $(2.2\pm0.3)\times10^{-12}$               | $2.2 \pm 0.3$    |
| $CaCl_2 \cdot 6H_2O$               | $32 \pm 2$             | $2.09 \pm 0.04$                | $(4.3\pm0.5)\times10^{-12}$               | $1.8 \pm 0.2$    |
| $Na_2Cr_2O_7 \cdot 2H_2O$          | $52 \pm 2$             | $3.74 \pm 0.05$                | $(1.9\pm0.3)\times10^{-11}$               | $1.4 \pm 0.2$    |
| $Na_2S_2O_3 \cdot 5H_2O$           | $76 \pm 2$             | $6.35 \pm 0.05$                | $(6.5\pm0.9)	imes10^{-11}$                | $1.5 \pm 0.2$    |
| K <sub>2</sub> CrO <sub>4</sub>    | $88 \pm 3$             | $7.60 \pm 0.05$                | $(1.3\pm0.2)\times10^{-10}$               | $1.5 \pm 0.2$    |
| $Na_2SO_4 \cdot 10H_2O$            | $93 \pm 3$             | $9.12\pm0.07$                  | $(3.3\pm0.4)	imes10^{-10}$                | $1.0 \pm 0.1$    |
| H <sub>2</sub> O vapors            | $100\pm3$              | $10.14\pm0.09$                 | $(1.3\pm0.2)\times10^{-9}$                | $0.7\pm0.1$      |
|                                    |                        |                                |                                           |                  |

Summary

BOREXINO

Bx radio-purity

Bcg mitigation

There is 3 orders of magnitude difference between the diffusion in the dry and in the foil saturated with water!

Nucl. Instr. Meth. A 449 (2000) 158 Nucl. Instr. Meth. A 524 (2004) 355

$$d_{e} = \sqrt{\frac{D}{\lambda}} \qquad d_{e}^{d} = 7 \mu m$$
$$d_{e}^{w} = 270 \mu m$$

## <sup>226</sup>Ra in/on BOREXINO nylon



Bx IV foil: bulk  $\leq 15 \ \mu Bq/kg$ surface  $\leq 0.8 \ \mu Bq/m^2$ total = (16 ± 4)  $\mu Bq/kg$  (1.2 ppt U eqiv.)

NIM A 498 (2003) 240

### **Construction of nylon vessels**



BOREXINO BX radio-purity Bcg mitigation

Summary



Princeton clean room class 100 with  $^{222}$ Rnreduced air (VSA filter): C<sub>Rn</sub> ~ 1 Bq/m<sup>3</sup>

A. Pocar, PhD Thesis (2003)

### **Inflation of vessels in SSS**



BOREXINO BX radio-purity Bcg mitigation

Summary



The nylon vessels were inflated in the sphere with synthetic air:  $C_{Rn} < 100 \ \mu Bq/m^3$ 

Int. J. Mod. Phys. A29 (2014) 1442009

# **Topics not discussed**



BOREXINO

BX radio-purity

Bcg mitigation

Summary

- <sup>226</sup>Ra adsorption on the nylon vessel (J. Rad. Nuc. Chem. 296 (2013) 639)
- <sup>222</sup>Rn-daughters deposition on the nylon vessel (E. Harding, Princeton)
- Tests of <sup>210</sup>Pb removal from PC (J. Rad. Nuc. Chem. 296 (2013) 639)
- Online <sup>222</sup>Rn monitoring with an electrostatic detector (NIM A 460 (2001) 272)
- Adsorption of noble gases on various porous materials (B. Freudiger, PhD Thesis (2003))
- NAA and ICP-MS measurements (Astroparticle Physics 18 (2002) 1)

# Summary



BOREXINO

BX radio-purity

Bcg mitigation

Summary

- BOREXINO achieved an unprecedented background level (still improving)
- Strict quality control program including the assay of all components of the detector during its construction
- ~15 years of R&D, several people involved
- Several detectors and experimental methods were developed allowing measurements even at a single atom level.
- Most of the developed techniques are world-wide most sensitive (Ge spectroscopy, <sup>222</sup>Rn detection, <sup>222</sup>Rn diffusion) and are applied in next-generation experiments (GERDA, XENON, DARKSIDE,...)



### Summary

 $BI = 10^{-3} \text{ cts/(keV \cdot kg \cdot y)}$ 



BOREXINO BX radio-purity Bcg mitigation

Summary

