

Background reduction in the **SNO+** Experiment

Laura Segui, for the SNO+ Collaboration University of Oxford 20/03/2015

OUTLINE

- General overview of the SNO+ experiment
- Brief double beta decay introduction
- Backgrounds in SNO+ and rejection techniques
 - Internal
 - Cosmogenics
 - Externals and others
- Total background and expected sensitivity
- Conclusions

The SNO+ Experiment

- SNO+: successor to Sudbury Neutrino Observatory (SNO)
- Located in SNOLAB inside the Creighton mine near Sudbury, Canada
 Depth = 2070m (6000m.w.e)
 ~70 muons/day in SNO+
 Class-2000 clean room
- Broad neutrino physics program
 - Neutrinoless double beta decay (0vββ) of
 ¹³⁰Te
 - Reactor anti-neutrinos
 - Geo anti-neutrinos
 - Supernovae neutrinos
 - Nucleon decay
 - Solar neutrinos (pep, CNO, low energy ⁸B)

The SNO+ Experiment

- SNO+: successor to Sudbury Neutrino Observatory (SNO)
- Located in SNOLAB inside the Creighton mine near Sudbury, Canada
 Depth = 2070m (6000m.w.e)
 ~70 muons/day in SNO+
 Class-2000 clean room
- Broad neutrino physics program
 - Neutrinoless double beta decay (0vββ) of ¹³⁰Te
 - Reactor anti-neutrinos
 - Geo anti-neutrinos
 - Supernovae neutrinos
 - Nucleon decay
 - Solar neutrinos (pep, CNO, low energy ⁸B)

Double beta decay

$$(A, Z) \rightarrow (A, Z+2) + 2e + 2\overline{v}$$
 ($\Delta L = 0$)
 $(A, Z) \rightarrow (A, Z+2) + 2e$ ($\Delta L = 2$)

Second process, theoretically possible \rightarrow imply violation of lepton number:

→ Neutrinos are Majorana particles (particle = antiparticle)

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu} |M_{0\nu}|^2 \left(\frac{\langle m_{\nu} \rangle}{m_e}\right)^2$$

 \rightarrow Mass of neutrino can be obtained

• Typical half-life: ~ 10^{25} - 10^{27} y \rightarrow very low rate \rightarrow control of backgrounds needed $Q_{\beta\beta}(^{130}\text{Te}) = 2527 \text{ keV}$

w

р

Double beta decay searches in SNO+

First phase 0.3% nat. Te =~ 800kg of ¹³⁰Te

Deployed into liquid scintillator

The ββ isotope and the detector are distinct in SNO+: background runs before deployment

¹³⁰Te

- ✓ High nat. abundance (34%)
- ✓ Slow 2νββ
- ✓ High light yield (~9,500 ph/MeV)
- \checkmark α -β separation
- Successfully loaded in LAB

Different Te loadings in LAB

Scintillator cocktail LAB + PPO (2g/L) + surfactant + H_2O + Te + wavelength shifter

New loading technique (BNL) (Minfang's talk)

- Dissolve telluric acid (Te(OH)₆) in water
- Combine with LAB using a surfactant
- Good optical properties
- Stable > 1.5 year explicitly demonstrated for 0.3% loading

Backgrounds in SNO+

Internal (Scintillator + Te)

- U/Th chain, ⁴⁰K
- Neutron capture
- ¹⁴C
- Te cosmogenics (⁶⁰Co,⁸⁸Y,^{110m}Ag,¹²⁴Sb)

Externals

- ²¹⁴Bi and ²⁰⁸TI gammas from AV and PMT's mainly
- Radon (and radon daughters) from AV surface leaching into scintillator (²¹⁰Bi, ²¹⁰Po, ²¹⁰Pb)

Fast Neutrons From external muons

Cosmic muons

 $^{\rm 11}\text{C}$ (solar phase), n capture 2.2MeV γ

⁸B solar neutrinos

2vββ: slow rate isotope

Purification for the internals backgrounds (Te and scintillator)

Purification of scintillator (see Richard Ford talk this morning)
 Target levels 6.8x10⁻¹⁸ g/g in ²³²Th and 1.6x10⁻¹⁷ g/g in ²³⁸U (~10⁻¹¹ Bq/kg)

Purification for the internals backgrounds (Te and scintillator)

Purification of scintillator (see Richard Ford talk this morning)

- > Target levels 6.8×10^{-18} g/g in ²³²Th and 1.6×10^{-17} g/g in ²³⁸U (~10⁻¹¹ Bq/kg)
- Purification of Tellurium
 - Te cosmogenics have long half-lives and decays that overlap the 0vββ energy region (main ones ⁶⁰Co, ^{110m}Ag, ¹²⁶Sn, ⁸⁸Zr, ⁸⁸Y, ¹²⁴Sb)
 - Rejection of cosmogenic isotopes needed 10⁴-10⁵ (V. Lozza and J. Petzoldt, Astropart. Phys. 61, 62-71 (2015))
 - Target levels 2.5x10⁻¹⁵ g/g in ²³⁸U (3x10⁻⁸ Bq/kg) and 3x10⁻¹⁶g/g in ²³²Th (1.2x10⁻⁹ Bq/kg) (raw Te ~ x10⁻¹¹g/g U/Th, 10⁻⁴ Bq/kg)
 - Some of these cosmogenics are not soluble in water and can be removed (as U/Th) by the scavenging method.
 - > But for others a different purification technique is required
 - New technique developed at BNL for Te-loaded scintillators (also details in Minfang Yeh talk).

Te purification strategy See S. Hans et. al. Purification of Telluric Acid for SNO+ Neutrinoless Double Beta Decay Search. In preparation

- 1. Surface passes (x2) (Acid-recrystallization):
 - Dissolve Te(OH)₆ in water
 - Recrystallize using nitric acid
 - Rinse with ethanol

> 10⁴ reduction

+ Improvement optical transmission blue region

Te purification strategy See S. Hans et. al. Purification of Telluric Acid for SNO+ Neutrinoless Double Beta Decay Search. In preparation

- 1. Surface passes (x2) (Acid-recrystallization):
 - Dissolve Te(OH)₆ in water
 - Recrystallize using nitric acid
 - Rinse with ethanol

> 10⁴ reduction

+ Improvement optical transmission blue region

Transported Underground within 5h Still can regenerate diminutive amount cosmogenic backgrounds

⁶⁰Co removed by a factor >10⁴ after two passes

Currently operating a 10kg pilot-scale plant Final design ~200 kg

Te purification strategy See S. Hans et. al. Purification of Telluric Acid for SNO+ Neutrinoless Double Beta Decay Search. In preparation

- 1. Surface passes (x2) (Acid-recrystallization):
 - Dissolve Te(OH)₆ in water
 - Recrystallize using nitric acid
 - Rinse with ethanol
 - > 10⁴ reduction
 - + Improvement optical transmission blue region

Transported Underground within 5h Still can regenerate diminutive amount cosmogenic backgrounds

- 2. Underground passes (x1) (Thermal-recrystallization):
 - Dissolve purified Te(OH)₆ in warm water (80°C)
 - Cool to recrystallize thermally

> 10² reduction

Approx. 70% of telluric acid crystal will be recovered. The residual 30% will be transferred back to the surface.

+ storage underground for 6 months $\,\rightarrow\,$

→ negligible contribution from cosmogenics

⁶⁰Co removed by a factor >10⁴ after two passes

Currently operating a 10kg pilot-scale plant Final design ~200 kg

Further reduction of internals based on rejection techniques developed with MonteCarlo simulations.

K. Majumdar, Institute of Physics, Neutrino Physics 2013 Meeting

- ²¹⁴BiPo factor > 25k rejection
- ²¹²BiPo factor > 70 rejection

Further reduction of internals based on rejection techniques developed with MonteCarlo simulations.

Cosmogenics (Time residual likelihood cuts): treating the PMT hit time residuals for diff. event as PDFs

- Compute the signal/backg likelihood difference
 - statistical separation between them using a likelihood analysis
- Time differences from how the charge is deposited: pointike events (β) vs. non-pointlike (γ)
- Improvements:
 - Defining a functional form PDF
 - Use of real data to constrain the PDF
 - Only need ~ 50 events to constrain PDF
 - 2σ separation with 20 events in Rol

J. Dunger, Institute of Physics, Neutrino Physics 2014 Meeting

Backgrounds in SNO+: Externals and $(\alpha,n)\gamma$

- External background: external gammas from U/Th chain (²⁰⁸Tl and ²¹⁴Bi) from the AV, light water shield, rope net system and PMT
 - \rightarrow attenuated with fiducial volume (at 3.5m, 20% FV
 - ~ 3.5 c/y)
- + 50% reduction with time likelihood cut (as for the cosmogenics)

I. Coulter, Event reconstruction and background rejection in the SNO+ experiment, Institute of Physics 2013 Meeting (April 8–10 2013) Track 3/66

(α,n)γ

Main reaction: $\alpha + {}^{13}C \rightarrow {}^{16}O + n$ produce 2.2 MeV gammas Can also produce a continuum from the collision of neutrons with protons (0.14 c/y)

Other backgrounds have been studied, as other sources of neutrons (from spontaneous fission, (n,n') reactions on Te), solar neutrino capture background for Te, external ²²²Rn (new cover gas system), other pile-ups, etc...

With negligible or mitigable contributions to the Rol

SNO+ Expected backgrounds

- * 3.5 m (20%) fiducial volume cut * 5 years
- ★ Rol: $-0.5\sigma \rightarrow 1.5\sigma$ around Q_{ββ}
- \star > 99.99% efficient ²¹⁴Bi tag

- ☆ 98% efficient internal ²⁰⁸TI tag
- ★ Factor 50 reduction ²¹²BiPo (pile-up)
- ★ Negligible cosmogenic isotopes
- ★ m_{0νββ} =200 meV*

*J. Barea et al. Phys. Rev. C87 (2013) 014315 J. Kotila, F.Iachello. Phys. Rev. C 85 (2012) 034316

SNO+ Sensitivity

The SNO+ sensitivity for a 0.3% loading as a function of lifetime, for both 90% CL limits and 3σ detection levels

• $T_{1/2}^{0\nu\beta\beta} > 10^{26}$ y (90% C.L.) for 5y lifetime

Conclusions

- SNO+ is a multi-purpose liquid scintillator detector
 - First aim is to detect the $0\nu\beta\beta$ of ¹³⁰Te
- In a neutrinoless double beta decay experiment it is mandatory the control and reduction of any source of background
- All the backgrounds impact in SNO+ have been evaluated through calculations and the full SNO+ Monte Carlo simulation (RAT)
- The main ones fall in the following categories: cosmogenics, external, Internal U/Th chain, $2\nu\beta\beta$ and ⁸B neutrinos
- Mitigation strategy:
 - Purification of all materials (in particular scintillator and Tellurium)
 - Energy Rol window
 - Fiducial volume restriction
 - Analysis techniques
 - Timing-based tags or cuts that exploit the β-α coincidences and the broadening of the PMTs hit time distributions for different types of events
- Applying the reconstruction and all the cuts to the simulated events, a total background of ~18 c/y is obtained
 - It gives a sensitivity of $T_{1/2}^{0\nu\beta\beta} > 10^{26}$ y (90% C.L.) for 5y lifetime

Thank you!

Camera above water

Camera and light underwater Camera underwater, light above water

The detector and cavity are currently about half filled with water.

Backup

Short and long living isotopes can be produced by cosmogenic activation of natural Tellurium:

- Q-value > 2 MeV
- T1/2 longer than 20 days
- From spallation reaction on Te
- Production rates have been estimated using the program ACTIVIA (checked with YIELDX);
- neutron and proton flux parametrization at sea level from Armstrong and Gehrels;
- In the low energy range (E<200 MeV), when available, the TENDL library for cross sections has been used;</p>
- 1 year sea level exposure;
- Purification on surface will be able to reduce the cosmogenic induced isotopes of a factor larger than 10⁴;
- A further purification step UG and a cooling down of some months are additionally used to remove the isotopes that are reproduced after the transport UG (few hours)

	Events Y1		
Isotope	$t_{exp} = 1 \text{ yr}$	PF stage 1	PF stage 2
		$t_{exp} = 5h$ surf	$t_{cool} = 6 \text{ mo. UG}$
22 Na	765	0.54	0.0047
^{26}Al	0.000	0.000	0.0000
42 K	9	0.772	6.62e-5
^{44}Sc	6	1.84	1.938e-5
^{46}Sc	3	0.01	1.377e-5
56 Co	0.68	0.00132	2.57e-6
58 Co	0.008	1.60e-5	0.0000
60 Co	720	0.44	0.0041
68 Ga	209	0.43	0.001
82 Rb	399	2.33	0.0002
84 Rb	9	0.04	8.82E-6
^{88}Y	45927	48.19	0.271
^{90}Y	2.86E-4	1E-5	0.0000
102 Rh	2	0.002	1.24E-5
$^{102m}\mathrm{Rh}$	3	0.02	2.49E-5
106 Rh	19	0.02	1.36E-4
110m Ag	3811	3.80	0.0229
^{110}Ag	2.02	0.002	1.22E-5
$^{124}\mathrm{Sb}$	132649	340.99	0.416
$^{126m}\mathrm{Sb}$	8	8.41	0.0000
$^{126}\mathrm{Sb}$	7827	93.12	3.29E-5

Strategy if we see a bump

Huntig the isotope

- Initially explored ¹⁵⁰Nd
- Biller and Chen in Fall 2011 emphasized some advantages of Te for DBD
- New investigations by the collaboration were started.
- A new loading technique for Te in liquid scintillator was developed by Yeh et al. in early 2012
- Detailed studies of purification, scintillator optics and backgrounds were completed by the collaboration
- Verification of these studies was completed by the collaboration

 $\rightarrow\,$ The decision to pursue Te DBD was made by the SNO+ collaboration

Time Scale

- 2015: water fill and commissioning
 - nucleon decay physics
 - Backgrounds analysis
 - Supernovae neutrinos
- 2016: start liquid scintillator fill
 - background analysis
 - reactor- and geo- antineutrinos
 - Supernovae neutrinos
 - Iow energy solar neutrinos
- 2017: 0.3% Te loading
 - neutrinoless double beta decay
 - reactor- and geo- antineutrinos
 - Supernovae neutrinos

