

Polymer Materials and Assay for Low Background Detectors

A Chemistry Perspective

Jay W. Grate, Mary Bliss, Orville T. Farmer III, May-Lin P. Thomas, Isaac Arnquist, and Eric W. Hoppe

Pacific Northwest National Laboratory

LRT 2015 Seattle WA

Radiopurity for Detector Materials

- Insulating materials
 - plastics

...structural plastics

- Radiopurity requirements are far more stringent than industrial chemical purity goals
- PTFE and HDPE
 - available as pure materials, only episodically
 - don't have good structural properties
- U, Th, K
 Goals: Move from milliBq/kg to microBq/kg
 U: 1 part per trillion = 1 pg/g = 12 microBq/kg

0.012 milliBq/kg

Proudly Operated by Battelle Since 1965

Plastics are not Metals

Plastics (polymers) Metals Refined from ore Synthesized Purity from refining processes Purity as synthesized Atomic basis (Macro)Molecular basis Fillers may be added to obtain structural properties desired Metals are similar Each plastic is different Dissolve in acid Many don't dissolve, depending on the plastic Analytical standards No analytical standards for U,Th in plastic Standard analysis methods No standard method for metals in plastics at radiopurity levels, especially not for U, Th

Plastics are not Metals

Consequences	Plastics (polymers)
Synthesis may include inorganic	Synthesized
potassium salts or metal catalyts	Purity as synthesized
Useful to know the process chemistry	(Macro)Molecular basis Fillers may be added to obtain structural
Not generally purified, hard to purify	properties desired
Sourcing materials is crucial	Each plastic is different
Analysis methods must be developed, different for each plastic	Many don't dissolve, depending on the plastic
Accuracy of analysis methods must be	No analytical standards for U,Th in plastic
checked by using multiple techniques, and by understanding your analysis process	No standard method for metals in plastics at radiopurity levels, especially not for U, Th

Plastics Datasheets

Proudly Operated by Battelle Since 1965

PES (Polyethersulfone)

High resistance to heat and combustibility, low smoke emission, and transparency are the combination of properties possessed by stock shapes extruded from PES. These, coupled with light weight, good impact resistance, dimensional stability, and chemical resistance, make stock shapes extruded from PES resin useful in the electrical/electronics, aerospace/aircraft, automotive, and mass transit industries. PES stock shapes are also applicable for heat and fire safety, food service, and hospital and health care items.

The following physical property information is based on typical values of the base polyethersulfone resin (PES).

Applications Include:

- Printed circuits
- High intensity light bases
- Safety face shields
- Machine guards
- Connectors

Advantages of PES:

- Low smoke generation
- · Excellent electrical properties at elevated temperatures
- Transparency
- · Excellent chemical resistance
- Easily machined

Property	ASTM Test Method	Units	PES	
Physical				_
Specific Gravity	Property	lln	its	Value
Water Absorption @24 hours	roperty			varue
Mechanical				
Tensile Strength @yield				
Tensile Modulus				
Tensile Elongation @yield				
Tensile Elongation @break				
Flexural Strength @yield				
Flexural Modulus				
Compressive Strength @yield		D		2
Compressive Modulus	Radioactivity	В	q/g	!
Izod Impact Strength				
Un-Notched	K mass concr	n ng	σ/σ	2
Hardness Rockwell	R mass conci	' P	0/0	•
Thermal	11		_ / _	C
Heat Deflection Temperature	U mass concr	ר p	g/g	۲.
@66 psi				
@264 psi	Th mass cond	n ng	σ/σ	?
Coefficient of Thermal Expansion	TH Mass cone		5/6	•
Flammability Rating-UL94 @.031	—	—	V-0	
Thermal Conductivity	C177	(BTU•in)/(hr•ft ² •°F)	1.13	
Limiting Oxygen Index	D2863	%	39.3	
Electrical				
Dielectric Strength	D149	V/mil	380	
Dislastria Constant @dkl.ls	DAFO		2 50	

R&D Capability in Radiopure Plastics

- Polymer synthesis leads to purity
- Source business requires purity
- May be improved locally

SOURCING

- Understand the supply chain
- Supply chain access
- Source will stay in business
- Sustainable partnerships possible

Sustainable

APPLICABILITY

- Structural properties
- Temperature/ vacuum compatibility
- Cleaning procedure compatibilty
- Iterate properties vs. detector functions electrical

QUALITY

- Source controls their purity
- Ease of analysis to required levels
- Purity known to very low levels
- Understand sources of contamination

Structural Polymer Examples

Proudly Operated by Battelle Since 1965

Data from GOPHER (SOUDAN) courtesy SuperCDMS team

Unit 450G903 Nylon 101 NC010 SUMIKAEXCEL SZ6505HF E680	9 7 T
--	--------------

Material Details						
Polymer Family	-	PEEK	Polyamide	PES	Mica-Filled LCP	Talc Filled LCP

U-238	mBq/kg	20.53 +/- 0.763*	< 1.34	1.208 +/- 0.360	380.7 +/- 15.66	2788 +/- 20.53
Th-232	mBq/kg	11.85 +/-0.78*	1.644+/- 0.473	1.141 +/- 0.447	73.79 +/- 0.8634	29.38 +/- 7.323

Со-60	mBq/kg	< 0.11*	< 0.1974	< 0.42	Undetermined	0.532 +/- 0.289
Cs-137	mBq/kg	< 0.13*	< 0.2528	<0.45	Undetermined	Undetermined
		PEEK (black)	Nylon	PES	LCP:Mica	LCP: Talc
		U: 20	U: <1.34	K: 1000	K: 99150	U: 2788
		Th: 12	Th: 1.6	milli Bq/kg	milli Bq/kg	milliBq/kg
		K: 11	K: 1.5			7
		milli Bq/kg	milliBq/kg			

More Polymer Examples

Proudly Operated by Battelle Since 1965

Vectra LCP (Liquid Crystal Polymer)

LCPs:

- structural polymers
- unique injection molding characteristics
 - fine-pitch connectors

Vectra:

- Batch polymerization in 10,000 pound batches in North Carolina on two staggered reactor lines
- Precursor batch held under nitrogen!

39 ppm: 1200 milliBq/kg

Other routes exist to make the same or similar LCPs using tin or antimony based catalysts Journal of Polymer Science Part A: Polymer Chemistry. Vol.38, 19, 3586–3595, 2000.

Sourced: PVDF Powder, Pellets, Parts Pacific Northwest National Laboration

Powder sampled from Solef HP production line

Injection molded parts double bagged in clean room

Pellets from self-cleaning pelletizer in laminar flow room

Assay on PVDF Pellets

Proudly Operated by Battelle Since 1965

Mass Spectrometry by ICP-MS

assays under development at PNNL

PVDF

insoluble fluoropolymer)

Dry ash/ UHP copper foil

U: ~< 1 milliBq/kg Possibly as low as < 65 uBq/kg Th: nd

U: ~0.010 milliBq/kg Th: ~0.003 milliBq/kg

Counting

Sample counting at SOUDAN slow to get statistics

Pellets from self-cleaning pelletizer in laminar flow room

Poly aromatic ether ketone polymers

Proudly Operated by Battelle Since 1965

very good structural polymers even without fillers

Sourced: PEKK and PEEK

Proudly Operated by Battelle Since 1965

Soluble in sulfuric acid for analysis by ICP-MS

Sourced: PEKK and PEEK

Phase I SBIR proposed

PEEK	22×8	2 2 2 4				
KETASPIRI Batch: YE101	KETASPIRE KT-880p Batch: YE10113		Re	Alexan	PEEK flake	
Net Wt: 2.2 Li	BS	S	ynth	^{esis} > Flak	e	
		G	irind	in		
SOLVAY	ADVANCEDB	<u> </u>	xtru	sie		
PEEK flake					(direct)	the provide a
dissolve in				- Alexandre		
acid			,	VICTREX PEE	к дорн	ER results)
	pg/g	milliBq/k	٢g		pg/g	, milliBq/kg
IJ	250	3	088]	20 530
Th	55	0	.223	c Th		11.850
nat K				K-40		10.900

Sample waiting at SOUDAN

LA – ICP-MS

- Direct solid sampling by laser ablation (LA)
 - + no sample preparation, fast
 - no matrix matched standards, not quantitative
- PNNL developments
 - Pb and U have similar total atom efficiencies from LA-sampling to detection in at least some plastics
 - Screening: is sample less than 1 milliBq/kg, yes or no
 - Working toward more quantitative approaches
 - Potential to drive detection limits down 100x with better laser and MS

To be described at the MARC conference in April

Summary

Proudly Operated by Battelle Since 1965

Chemistry Perspective

- Looking at polymer synthesis, reagents, catalysts
- Sourcing materials
 - semiconductor and biomedical industries
 - Materials before contamination by handling and processing

Highlights

structural plastics

- PVDF pellets
 - U: 0.010 milliBq/kg
 - Th: 0.003 milliBq/kg
 - Counting at SOUDAN

NXT	-75
mill	liBq/kg
U	< 0.023
Th	< 0.006
К	0.099

PTFE

Assay

- Dissolution ICP-MS
- LA ICPMS

Purification

PEEK flake

- U: 3 milliBq/kg
- Th: 0.2 milliBq/kg

VICTREX	GOPHER
PEEK	milli Bq/kg
U	20.530
Th	11.850
К-40	10.900

Acknowledgements

PNNL

- Mary Bliss
- Eric Hoppe
- May-Lin Thomas
- Tom Farmer
- Isaac Arnquist
- Jim Fast
- John Orrell
- Jeter Hall

SuperCDMS

- Sunil Golwala
- Richard Partridge
- Miguel Daal
- David Nelson
- Erik Kramer SOUDAN
- Mark Pepin

The research described in this presentation is part of the

USNMI—UltraSensitive Nuclear Measurements Initiative

at Pacific Northwest National Laboratory. It was conducted under the **Laboratory Directed Research and Development** Program at **PNNL**, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy."