

Results and perspectives of the GERDA experiment

- Why and how to search for $0\nu\beta\beta$ -decay
 - The GERDA experiment
- GERDA Phase I results & background model
 - GERDA Phase II status & projection

beta-decay only possible if:

• Helicity flip can occur in the vertex

Contribution to 0vββ-decay rate by effective Majorana neutrino mass:

$$1/\tau = G(Q^5,Z) |M_{nucl}|^2 \langle m_{ee} \rangle^2$$

0vββ decay-Phase space-MatrixEffective MajoranaratefactorelementNeutrino mass

B. Majorovits

Why and how to search for 0vββ decay

Observation of 0vββ decay would prove:

- Lepton number violation ΔL=2
- Majorana character of neutrino

<u>0vββ decay is motivated by:</u>

- •Baryogenesis via Leptogenesis
 - Majorana Neutrino masses

•See Saw Mechanism: Smallness of neutrino masses

• Any Lepton number violating BSM process

No (observable) 0vββ decay is expected if:

• v is a pure Dirac particle

- CP violating Majorana phases add up destructively
 - $\langle m_{ee} \rangle < 1 \text{ meV} [T_{1/2} > 10^{31} \text{ yr}]$

The GERDA Collaboration

The GERDA experiment

Idea: use bare HPGe detectors in ultra pure cryogenic liquid:

[G. Heusser, Annu. Rev. Nucl. Part. Sci. 45(1995) 543]

GERDA Phase I results

Phase I data taking: Nov. 2011 to May 2013

14.6 kg coaxial detectors
3.0 kg BEGe detectors
→ 21.6 kg yr exposure

PRL 111 (2013) 122503 [arXiv:1307.4720]

→ $T_{1/2}(0\nu\beta\beta) > 2.1 \ 10^{25} \text{ yr} (90\% \text{ C.L.})$ frequ. analysis median sensitivity: $T_{1/2}(0\nu\beta\beta) > 2.4 \ 10^{25} \text{ yr}$

GERDA Phase I results

background decomposition of the high energy spectrum

preliminary analysis: 0 events with complete sub chain detected →internal A(²²⁶Ra, ^{228Th}, ²²⁷Ac) ≤ 4nBq/kg

close components only describe background well! ⁴²K, ⁶⁰Co, ²¹⁴Bi, ²²⁸Th, alphas

Eur. Phys. J. C (2014) 74:2764 arXiv:1306.5084

⁴²K dominates BEGe spectrum in RoI
 close components only describe background well!
 ⁴²K, ⁶⁰Co, ²¹⁴Bi, ²²⁸Th, alphas

Eur. Phys. J. C (2014) 74:2764 arXiv:1306.5084

GERDA

GERDA Phase I background model

2vββ half lifes derived from for different models and data sets

Model	\mathcal{E} [kg yr]	$T_{1/2}^{2\nu} imes 10^{21} m yr$
GOLD-coax minimum	15.40	$1.92^{+0.02}_{-0.04}$
GOLD-coax maximum	15.40	$1.92^{+0.04}_{-0.03}$
GOLD-nat minimum	3.13	$1.74_{-0.24}^{+0.48}$
SUM-BEGe	1.80	$1.96^{+0.13}_{-0.05}$
Analysis in Ref. [20]	5.04	1.84 ^{+0.09} +0.11 -0.08 fit -0.10 syst

$$T_{1/2}^{2\nu} = (1.926 \,{}^{+0.025}_{-0.022}\,(\text{stat}) \pm 0.092\,(\text{syst})) \cdot 10^{21}\,\text{yr}$$

GERDA Phase I results

$2\nu\beta\beta$ decay of ⁷⁶Ge with the emission of Majoron(s)

Model	n	Mode	Goldstone	L	$T_{1/2}^{0\nu\chi}$
			boson		$[10^{2'3} yr]$
IB	1	χ	no	0	> 4.2
IC	1	χ	yes	0	> 4.2
ID	3	$\chi\chi$	no	0	> 0.8
IE	3	$\chi\chi$	yes	0	> 0.8
IF	2	χ	bulk field	0	> 1.8
IIB	1	χ	no	-2	> 4.2
IIC	3	χ	yes	-2	> 0.8
IID	3	$\chi\chi$	no	-1	> 0.8
IIE	7	$\chi\chi$	yes	-1	> 0.3
IIF	3	χ	gauge boson	-2	> 0.8

Most stringent limits (⁷⁶Ge) $n=1 \& n=3 \rightarrow$ improved by a factor 6 for $n=7 \rightarrow$ improved by a factor 5 for $n=2 \rightarrow$ reported for the first time

GERDA Phase II:

Additional 20kg BEGe detectors with point like contact:

 $\mathbf{E_2}$

Signal: Background? Liquid Argon 128nm scintillation light To light detector

Use LAr veto:

0

0

Time [µs]

Single Site

Event: SSE

Ap. Ag≥±t

GERDA Phase II status

BEGe production history: shielded whenever possible

Production and characterization of BEGes

Energy resolution of GERDA BEGe detectors in vacuum cryostat

BEGe PSD: Comparison between expected and observed A/E distributions:

mounting support and lock at LNGS

Ap. Dg = 1t

GERDA Phase II status

Copper shroud lined with reflecting TPB coated Tetratex

7 bottom 3" PMTs

GERmanium Detector Array

TPB coated fiber shroud with SiPMs

Ap. Dg > 1t

GERDA Phase II status

pilot string

with nylon mini-shroud

GERDA Phase II

Main background components expected after PSD & LAr veto: 42 K in LAr $\sim 0.9 \cdot 10^{-3}$ counts/(kg yr keV)mini shroud & PSD essential!

²¹⁴Bi in close surrounding ~ 0.2 · 10⁻³ counts/(kg yr keV)
 → LAr veto & transp. mini shroud!

FE electronics & support ~ 0.1 · 10⁻³ counts/(kg yr keV)

→Total expected BI ~ 10⁻³ (Cts/kg yr keV)

→ sensitivity: ${}^{0\nu\beta\beta}T_{1/2}({}^{76}Ge) \sim 2 \cdot 10^{26}$ yr with 100 kg·yr exposure

March 20. 2015 LRT, Seattle

W

 $\overline{v}_{e} = v_{e}$

- 0vββ decay is important probe of **BSM** physics
 - GERDA Phase I: best (⁷⁶Ge) limits on $0\nu\beta\beta(\chi)$
- background dominated by close by contaminations
- **GERDA** phase II infrastructure in place
 - LAr veto works!
 - GERDA Phase II will start commissioning soon
 - GERDA Phase II reach: ⁰vT_{1/2}~10²⁶ years

GERDA Phase II goal

GERDA

background decomposition of the high energy spectrum

α-component detector specific. Structures in BEGe spectra less pronounced