Low Background Signal Electronics for the MAJORANA DEMONSTRATOR

lan Guinn

WThe MAJORANA CollaborationUNIVERSITY ofLow Radioactivity TechniquesWASHINGTONMarch 18, 2015

Office of Science

Outline

- The MAJORANA DEMONSTRATOR
 - Estimation of backgrounds
- Signal Electronics
 - Requirements
 - Front end boards
 - Signal Cables
- Signal Connectors
 - Original design
 - New Designs

MJD Overview

Funded by DOE Office of Nuclear Physics and NSF Particle Astrophysics, with additional contributions from international collaborators.

- Goals: Demonstrate backgrounds low enough to justify building a ton-scale ⁷⁶Ge experiment.
 - Establish feasibility to construct & field modular arrays of Ge detectors.
 - Searches for additional physics beyond the standard model
- Located underground at 4850' Sanford Underground Research Facility
- Background Goal in the 0vββ peak region of interest (4 keV at 2039 keV) 3 counts/ROI/t/y (after analysis cuts)

scales to 1 count/ROI/t/y for a ton-scale experiment

- 40-kg of Ge detectors
 - 30-kg of 87% enriched ⁷⁶Ge crystals & 10-kg of ^{nat}Ge
 - Detector Technology: P-type, point-contact.
- 2 independent cryostats
 - ultra-clean, electroformed Cu
 - 20 kg of detectors per cryostat
 - naturally scalable

Compact Shield

 low-background passive Cu and Pb shield with active muon veto

Background - Summary

Background Rate (c/ROI-t-y)

3/18/2015

Background Estimation

Perform radioassay of all materials that will go inside of shielding

γ-counting: Sensitivity ~mBq/kg

Neutron Activation Analysis (NAA): Sensitivity ~0.1 µBq/kg

Inductively Coupled Plasma Mass Spectrometry (ICP-MS): Sensitivity ~0.1 µBq/kg

> **Glow Discharge Mass Spectrometry (GDMS)**: Sensitivity ~0.1 µBq/kg

Background Estimation

Detailed model of geometry in Geant4 is used to estimate background detection efficiency for each component.

Background - Summary

Background Rate (c/ROI-t-y)

3/18/2015

Charge Sensitive Amplifier

Pulse travels up signal cables along string...

...along thermosyphon crossarm...

Requirements

- 1 channel for each detector
- 4 cables for each channel
- Low background materials
- Low mass
- Low noise
- Easy to manipulate in glove box
- Robust under vacuum and thermal cycling to LN temperature

Front end

Cable Pre-amplifier

Low Mass Front End (LMFE) JFET Amorphous (Ag epoxy) Au+Ti trace Ge Resistor Ag Epoxy Gate Pad 10104 **Fused silica** Capacitance **EFCu Spring** Wire bonds substrate from traces **Clip Mount** 10 GΩ 0.2 pF Feedback Source Det. Drain 0.05 pF Pulser

Low Mass Front End (LMFE)

U+Th activity from totaling components:

- 715 nBq/frontend
- 0.27 cts/ROI/t/y

Material	Assay Method	Isotope	purity	MJD BG
			[pg/g]	[c/ROI/t/y]
Fused Silica	ICP-MS	238 U	284	0.0616
		²³² Th	101	0.0259
aGe	ICP-MS	238 U	5000	0.0001
		²³² Th	5000	0.0001
Au	ICP-MS	238 U	2000	0.0015
		²³² Th	47000	0.0421
Ti	ICP-MS	^{238}U	< 100	~ 0
		²³² Th	$<\!400$	~ 0
FET die	ICP-MS	^{238}U	<141	< 0.0006
		²³² Th	$<\!2000$	< 0.0107
Al	ICP-MS	²³⁸ U	91000	0.0004
		232 Th	9.0	~ 0
Ag epoxy	γ -counting	238 U	<10000	< 0.0082
		²³² Th	<70000	< 0.0685
EFCu Spring Clip	ICP-MS	²³⁸ U	< 0.015	0.0005
		²³² Th	< 0.014	0.0003

ICP-MS of the full LMFE yields slightly higher U+Th backgrounds of

- 1590 nBq/frontend
- 0.6 cts/ROI/t/y

Signal Cables

Axon Picocoax[®] Cables

_extruded PFA _AWG50 bare copper _extruded PFA _bare copper

> 0.4mm OD 50Ω imp. 87 pF/m 0.4 g/m

Bundles of 4

U and Th backgrounds from ICP-MS 59 nBq/m 0.085 cts/ROI/t/y

Signal Connectors

Challenge: Most connectors use BeCu springs. BeCu is too radioactive for MJD!

Signal Connectors

Attempted Redesign: Paddle Comb

Plug Design

Contact force from Spring action of misaligned pins

Problems

 High Precision machining -> some pairings fail

Assay Limits

U and Th backgrounds from full body ICP-MS: 1521 nBq/connector 0.28 cts/ROI/t/y

Assay results consistent with connector activity dominated by pins

Material	Assay Method	Mass [g per pair]	Isotope	Activity [µBq/kg]	MJD BG [c/ROI/t/y]
Pins (w/BeCu)	ICP-MS	0.056	²³⁸ U 232m	795000 ± 12000	8.8 ± 0.1
Pins (no BeCu)	ICP-MS	0.056	²³⁸ U	41000 ± 1000 4600 ± 1500	$\frac{2.3 \pm 0.1}{0.05 \pm 0.02}$
Vernel CD 1		0.05	²³² Th 238U	$\frac{5800 \pm 100}{< 1000}$	$\frac{0.32 \pm 0.01}{< 0.20}$
vespel SP-1	NAA	0.95	²³² Th 238U	<12 5600 + 1000	< 0.01
Solder	GDMS	0.04	²³² Th	<12	<0.0004
Solder flux	GDMS	0.04	²³⁸ U ²³² Th	$\begin{array}{r}1200\pm200\\<400\end{array}$	$0.008 \pm 0.001 \\ < 0.016$

Electronics Production

EFCu and Vespel parts machined at 4850' level of SURF

Pins pressed into plug housing

Plugs are QC'd and soldered to cable bundles at UW

3/18/2015

Electronics Production

LMFEs are manufactured and attached to signal cables at LBNL

The MAJORANA Collaboration

Black Hills State University, Spearfish, SD Kara Keeter

Duke University, Durham, North Carolina, and TUNL Matthew Busch

Institute for Theoretical and Experimental Physics, Moscow, Russia Alexander Barabash, Sergey Konovalov, Vladimir Yumatov

Joint Institute for Nuclear Research, Dubna, Russia Viktor Brudanin, M. Shirchenko, Sergey Vasilyev, E. Yakushev, I. Zhitnikov

Lawrence Berkeley National Laboratory, Berkeley, California and the University of California - Berkeley

Nicolas Abgrall, Mark Amman, Paul Barton, Adam Bradley, Yuen-Dat Chan, Paul Luke, Susanne Mertens, Alan Poon, Christopher Schmitt, Kai Vetter, Harold Yaver

Los Alamos National Laboratory, Los Alamos, New Mexico Pinghan Chu, Steven Elliott, Johnny Goett, Ralph Massarczyk, Keith Rielage, Larry Rodriguez, Harry Salazar, Wenqin Xu

Oak Ridge National Laboratory

Cristian Baldenegro-Barrera, Fred Bertrand, Kathy Carney, Alfredo Galindo-Uribarri, Matthew P. Green, Monty Middlebrook, David Radford, Elisa Romero-Romero, Robert Varner, Brandon White, Timothy Williams, Chang-Hong Yu

> Osaka University, Osaka, Japan Hiroyasu Ejiri

Pacific Northwest National Laboratory, Richland, Washington Isaac Arnquist, Eric Hoppe, Richard T. Kouzes, Brian LaFerriere, John Orrell

South Dakota School of Mines and Technology, Rapid City, South Dakota Adam Caldwell, Cabot-Ann Christofferson, Stanley Howard, Anne-Marie Suriano, Jared Thompson

> Tennessee Tech University, Cookeville, Tennessee Mary Kidd

University of North Carolina, Chapel Hill, North Carolina and TUNL Tom Gilliss, Graham K. Giovanetti, Reyco Henning, Jacqueline MacMullin, Samuel J. Meijer, Benjamin Shanks, Christopher O' Shaughnessy, Jamin Rager, James Trimble, Kris Vorren, John F. Wilkerson

University of South Carolina, Columbia, South Carolina Frank Avignone, Vince Guiseppe, David Tedeschi, Clint Wiseman

University of South Dakota, Vermillion, South Dakota Dana Byram, Ben Jasinski, Ryan Martin, Nathan Snyder

University of Tennessee, Knoxville, Tennessee Yuri Efremenko

University of Washington, Seattle, Washington Tom Burritt, Micah Buuck, Clara Cuesta, Jason Detwiler, Julieta Gruszko, Ian Guinn, Greg Harper, Jonathan Leon, David Peterson, R. G. Hamish Robertson, Tim Van Wechel

Students in red