

Quest for Lowest Energy Neutrinos in Super-Kamiokande

Low Radioactivity Techniques workshop 2015 Seattle, March 20 2015 Hiroyuki Sekiya

LRT 2015 Mar. 20 2015 @Washington Univ. Seattle

Hiroyuki Sekiya

Super-Kamiokande

- 50kton pure water Cherenkov detector
- 1km (2.7km w.e) underground in Kamioka
- 11129 50cm PMTs in Inner Detector
- 1885 20cm PMTs in Outer Detector

This talk

Hiroyuki Sekiya

Recent SK Solar neutrino results

- SK has observed solar neutrino for 17 years(~ 1.5 solar cycle)
 - Fully consistent with a constant solar neutrino flux emitted by the Sun
- 4500days of data, ~70000 solar v interactions
 - SK data provide the first indication (at 3.0 σ) of terrestrial matter effects on ⁸B solar v oscillation.

Hiroyuki Sekiya

LRT 2015 Mar. 20 2015 @Washington Univ. Seattle

History of lowered BG and threshold

- Solar angle distributions
 - BG SK-I/SK-IV=1/4, E_{th} SK-I SK-IV = 1MeV

How it was achieved?

It's easy! Just tightening the FV to reject Rn rich region.

Hiroyuki Sekiya

LRT 2015 Mar. 20 2015 @Washington Univ. Seattle

Convection suppression in SK-IV

 Very precisely temperature-controlled (±0.01°C) water must be supplied to the bottom.

Hiroyuki Sekiya

LRT 2015 Mar. 20 2015 @Washington Univ. Seattle

- 7

Hiroyuki Sekiya

LRT 2015 Mar. 20 2015 @Washington Univ. Seattle

Temperature control unit

• Mine water, Heat exchanger, Flow control valve, PID controller, 5 digits thermometer

パラメータ	現在値	変更値				
比例定数(P)	10.0%	10.0%				
積分定数(I)	3 秒	3 秒				
微分定数(D)	0 秒	0 秒				
操作量下限値(MVL)	3.0%	3.0%				
操作量上限値(MVH)	100.0%	100.0%				
計測値(PV)	13.06℃					
設定値(SP)	13.06℃	13.06℃				
出力値(MV)	17.8%	· · · · · · · · · · · · · · · · · · ·				
A/M	A					
温度計選択(HE-4)						
測定水槽入口 測温抵抗体	測定水槽入口 1-1水晶温度計	測定水槽 B-1水晶温度計				
計測値						
13.02 °c	13.06 с 13.0633 с	13.03 c 13.0217 c				

Cooling water system of SK-IV

• Two control units are connected in series!

Hiroyuki Sekiya

LRT 2015 Mar. 20 2015 @Washington Univ. Seattle

Water flow in SK-IV

Hiroyuki Sekiya

LRT 2015 Mar. 20 2015 @Washington Univ. Seattle

Bacteria-rich,

According to literatures

- Pseudomonas genus
 - Aerobic
 - Need P,K,Na,Mg,Ca,Fe,Al...

- Many of them make fluorescent dyes (fluorescein) which absorb blue lights (peak 494nm) and emit green lights (peak 521nm).
- On the wall(surface; tyvek, blacksheet, FRP, acrylic), there should be their nests!
- Top half region water: Air-rich, but what else is different from the water in bottom half? what is the nutrition for the bacteria?

TOC and particles

2011.10.20	Supply	Return	Z=-16.55	Z=-6.55	Z=3.45	Z=13.45
TOC μg/L(=ppb)	10	<10	10	<10	<10	<10
>0.1µm particles/ml	<50	205	313	<50	504	580
>0.2µm	<50	145	135	<50	425	378
>0.3µm	<50	103	79	<50	411	336
>0.5µm	<50	70	<50	<50	355	289

- Particles in bottom: dusts
- Particles in top: dusts+bacteria
- TOC in supply water?

Z-dependence of the metal contamination is Elemental analysis(ICP-MS) similar to those of particles/bacteria. Nutrition?

ng/L,ppt	Supply	Return	Z=-16.55	Z=-6.55	Z=3.45	Z=13.45	Mine water (ppm)
Na	<3	<20	4	4	<20	<10	4.3
К	<3	<20	< 3	<3	<20	<20	0.4
Са	<3	70	26	39	110	130	73.1
Mg	<3	<20	<3	4	<20	<20	11.4
Fe	<3	<20	< 3	< 3	<20	<20	<0.03
Cu	<3	<20	<3	<3	<20	<20	<0.05
Zn	<3	60	22	39	150	170	0.49
Cd	<3	<20	<3	<3	<20	<20	N/A
Ni	<3	<20	<3	<3	<20	<20	N/A
Pb	<3	<20	< 3	< 3	<20	<20	<0.2
Mn	<3	<20	< 3	< 3	<20	<20	<0.03
AI	<3	<20	< 3	<3	<20	<20	0.01
Со	<3	<20	< 3	< 3	<20	<20	N/A
Cr	<3	<20	< 3	< 3	<20	<20	N/A
Ti	<1	<50	<1	<1	< 50	<50	N/A

Hiroyuki Sekiya

LRT 2015 Mar. 20 2015 @Washington Univ. Seattle

How about Rn?

- SK-IV Rn concentration estimated from event rate ~0.2mBq/m³
 - Assuming all BG is Rn
- C.f. Calibration was conducted in 2007(SK-III)

BS rr-z distribution

1500

1000

500

N 0

- Direct Rn measurement was necessitated!
 - Water Rn detector with sub-mBa/m³ sensitivity must have been developed!

SK-IV 4.0-5.0MeV

~0.2mBq/m³

16

Entries 367104

200

180

160

1200

New technique 1

K.Hosokawa et. al., PTEP 2015 033H01 Y. Nakano et. al., in preparation for NIM-A

New low BG electro-static collection Rn detector.

80L of volume

Hiroyuki Sekiya

New technique 2

• New low BG Rn extraction system from water to air.

Y. Nakano et. al., in preparation for NIM-A

New technique 3

• Sub mBq/m³ Rn requires concentration and withdrawal to be measured

Cooling & Baking the charcoal Rn trap

Hiroyuki Sekiya

LRT 2015 Mar. 20 2015 @Washington Univ. Seattle

1+2+3

- Withdrawn radon is packed in the 80L detector.
- Fit the decay to get the initial concentrated Rn concentration.

 $C(t) = C(0)e^{-(\ln 2.0/3.82)t} + C_{\rm BG}$

- Derive the water Rn concentration
- Repeat with different concentration time.
- Rn concentration should be in proportion to the concentrated time/total flowed air volume.

Example: Results of return water measurement

Rn emanation measurement setup

• Water system plumbing materials are tested in air.

Rn emanation from rubber gaskets

• EPDM rubber gaskets are used in SK.

EPDM	

	rubbers	Rn emanation <pre>/1 gasket</pre>	Rn emanation / m ²		
	EPDM	1.82 ±0.03 mBq	0.809±0.013 Bq		
	Butyl	3.58 ±0.04 mBq	1.59 ±0.02 Bq		
Urethane	Urethane	0.013±0.004 mBq	5.8±1.8 mBq		

- N.B. This is NOT the emanation to water.
- EPDM is Rn rich! Urethane is good.
- The gaskets must be replaced.

Butyl

Summary

- Main Rn source in SK tank is PMT.
- By controlling the supply water temperature and the flow in SK tank, the Rn concentration in the FV is kept at ~0.3mBq/m³
- This was confirmed by the low-BG water Rn detector that we have developed.
- SK water system reduces Rn from 9.1mBq/m³ to 1.7/m³ mBq, but we are still trying to reducing Rn for the spectrum upturn of Solar ⁸B neutrino.