

Ultra-low Level Radon Assays in Gases

Xin Ran Liu

On behalf of the SuperNEMO collaboration

LRT2015, 18-20 March 2015 Pacific Northwest National Laboratory and the University of Washington

SuperNEMO

> A next generation $0v\beta\beta$ experiment.

- Source Foil: 5-7 kg of ⁸²Se. (or ¹⁵⁰Nd/⁴⁸Ca etc).
- Gas Tracking Chamber: Drift chamber (2000 cells).
- Calorimeter: Consists of 712 PMTs and scintillator blocks.
- ♦ Phase 1: Demonstrator (7kg of ⁸²Se).
- ♦ Phase 2: Up to 20 identical modules (100 kg).

The Challenge

The Challenge

	MARCEL NO.
	and of
	2000 10000
	and the second second
	and the first of the
	A BAR AND
	Constant in the second
	7 1 3
and the second s	ASUNG TALES
the second se	100 4
and the second s	and the second
CONTRACTOR OF A	· · · · · · · · · · · · · · · · · · ·
	的影響者。 第二十四日
2	10 (2) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
States	and the second second
State of the State	AND A CONTRACTOR
	SAP AN AN
and the second sec	
	and the second of the second

	SuperNEMO Demonstrator	
	activity	events in 17.5 kg∙yr
$2\nu 2\beta$	$(96 \pm 10 \times 10^{18} \text{ y})^{-1}$	0.319 ± 0.041
$Radon^1$	$< 0.15 \ { m mBq} { m m}^{-3}$	0.033 ± 0.013
²¹⁴ Bi	$< 10 \ \mu Bq kg^{-1}$	0.019 ± 0.003
²⁰⁸ TI	$< 2 \ \mu Bq kg^{-1}$	0.030 ± 0.003
	Deview of interest (0 (

Region of interest (2.8 – 3.2 MeV)

19 March 2015

The Challenge

	SuperNEMO Demonstrator		
	activity	events in 17.5 kg∙yr	
$2\nu 2\beta$	$(96 \pm 10 \times 10^{18} \text{ y})^{-1}$	0.319 ± 0.041	
$adon^1$	$< 0.15 \ { m mBq} { m m}^{-3}$	0.033 ± 0.013	
²¹⁴ Bi	$< 10 \ \mu Bq kg^{-1}$	0.019 ± 0.003	
²⁰⁸ TI	$< 2 \ \mu Bq kg^{-1}$	0.030 ± 0.003	
Region of interest (2.8 – 3.2 MeV)			

19 March 2015

Backgrounds: ²³⁸U Chain

LRT2015

Radiopurity Strategy for Demonstrator Module

Source Foil

• **HPGe detectors (**0.1-1 mBq/kg for ²³⁸U, ²³²Th chains and ⁴⁰K).

• **BiPo** detector for source foil (2-10 µBq/kg for ²⁰⁸Tl and ²¹⁴Bi). (See Xavier Sarazin's talk yesterday.) • HPGe detectors (similar to source foil).

Tracker

• Emanation chambers for radon.

(See Cedric Cerna's talk this morning.)

 Radon concentration line (RnCL) (< 0.15 mBq/m³).

• R&D for more efficient and radiopure radon absorbents.

(See Raymond Noel's talk before this.)

(Radon Barrier) Calorimeter

• Calorimeter components inside the tracker (0.1-1 mBq/kg).

• Outside the gas volume (1-10 mBq/kg).

Radiopurity Strategy for Demonstrator Module

Source Foil

• **HPGe detectors (**0.1-1 mBq/kg for ²³⁸U, ²³²Th chains and ⁴⁰K).

• **BiPo** detector for source foil (2-10 µBq/kg for ²⁰⁸Tl and ²¹⁴Bi). (See Xavier Sarazin's talk yesterday.) • HPGe detectors (similar to source foil).

Tracker

• Emanation chambers for radon.

(See Cedric Cerna's talk this morning.)

 Radon concentration line (RnCL) (< 0.15 mBq/m³).

• R&D for more efficient and radiopure radon absorbents.

(See Raymond Noel's talk before this.)

(Radon Barrier) Calorimeter

• Calorimeter components inside the tracker (0.1-1 mBq/kg).

• Outside the gas volume (1-10 mBq/kg).

Everything is radioactive unless proven otherwise through screening!

LRT2015

Diffusion R&D

 \succ Possible introduction of a radon barrier to reduce emanation into the tracker.

LRT2015

Diffusion R&D: Selected results

Material	Thickness (µm)	Diffusion Coefficient (10 ⁻¹² m ² s ⁻¹)	Diffusio n Length (µm)	Radon Suppression Factor (15 µm)
	Adhes	ives/Sealants		
Silicone (RTV 615)	2100	1080	22800	1.002
Stycast 1264	2000	<0.43	<455	> 6.9
SBR (Synthomer 47B40) + HDPE	700 + 120	0.27	406	8.3
Delrin Sheets	2100	<0.072	186	36
Butyl	6 + 11	<0.00038	<13	1.02
Foils				
EVOH (2 layers)	2×15	< 0.00035	< 13	> 8900
Mylar (2 layers)	2×20	< 0.0012	< 24	> 2300
TROPAC III	102	< 0.0043	< 46	> 600
NYLON	50	0.00047	15	6380
19 March 2015		LRT2015		10

Electrostatic Detector

- Electro-polished stainless steel 70 L vessel.
- Contains a silicon PIN diode with -1500 V applied.
- Two valves coated with SBR.
- Calibrated using a Rn flowthrough source.

Detector Background and Sensitivity

Radon Concentration Line (RnCL): Concept

➢ Monitor radon concentration at < 0.15 mBq/m³ during construction.

Radon Concentration Line (RnCL): Concept

Monitor radon concentration at < 0.15 mBq/m³ during construction.

1/4 SuperNEMO tracker (~ 3.8 m³) Electrostatic detector

Radon concentration line (similar to MoReX in Heidelberg)

Tracker gas (He/N2/Ar etc) is pumped through a carbon trap at -50°C and the ²²²Rn in the gas is adsorbed. The concentrated sample is then heated and transferred to the electrostatic detector via helium purge.

19 March 2015

Tracker Sub-Module

- SuperNEMO modules are constructed in four parts, each part is called a C-Section (due to the shape).
- Each completed C-Section is sealed using electro-polished stainless steel plates and then tested to ensure gas tightness.

LRT2015

RnCL: Detection, Trap & Transfer Efficiencies

- To measure detection efficiency, put a known amount of radon from a source in detector.
- > Then transfer into trap and back to get **trapping & transfer efficiency**:

RnCL: Sensitivity Estimates

Assuming a supply of gas of constant activity leads to the following sensitivity for a given volume of gas:

RnCL: Gas Bottles Measurement

The background emanation from the gas supply line and the activity from the output of the cylindered gas were measured separately in order to disentangle the two.

Po214 activity from 0.075 m^3 of helium and the supply line.

Po214 activity from the supply line and 10.7 m³ of nitrogen

It has been observed that there is a large variation to the radon levels from the nitrogen cylinders. Therefore it's key to measure the gas cylinders used so their contribution may be subtracted.

Gas	Source	Radon Level $(\mu Bq/m^3)$
He	Cylinder	70-100
N_2	Cylinder	400-1000
N_2	Boil-off	90-140

This contamination (and variation in contamination) in the carrier gas is a problem for the tracker (C-section) measurement, i.e. large *detector* volume measurements.
19 March 2015
LRT2015

Radon Trap System

Hence a radon trap system was designed and built, capable of removing the radon from the carrier gas by up to 10 orders of magnitude depending on the gas.

Tracker Sub-Module

For each emanation measurement of the C-Section, the radon trap system is installed prior to the measurement setup and used to purify the carrier gas at the input

Nitrogen Gas Measurement

- Cylindered nitrogen was flown first through the Rn trap system and then the RnCL trap with a flow rate of 7 lpm for 20 hours.
- Expect 1.6 ± 0.5 cpd from trap background (flushed, then closed for 24 hours).

Gas	Source	Radon Level (µBq/m³)
He	Cylinder	70 – 100
N ₂	Cylinder	400 – 1000
N ₂	Boil-off	90 – 140
N ₂	Rn-Trap	20 ± 12

Summary and Outlook

- > The required ²²²Rn level for SuperNEMO is < 0.15 mBq/m³.
- This challenging target has resulted in a large programme of radon R&D including:
 - A dedicated setup for diffusion studies of different materials to form **anti**radon barriers and radon proofing seals.
 - Development of a RnCL capable of measuring a ¼ tracker at ~ 0.05 mBq/ m³ and large volumes of gas at ~ 5 μBq/m³.
 - A radon trap system was developed capable of radon suppression by at least a factor of 20 in nitrogen.
- > A measurement of a fully populated tracker sub-module is on going.
- Due to measure the Rn trap system purification level on helium and expect to have < 5µBq/m³.

Thank you for listening! Any questions?

Backup Slides

The NEMO-3 Experiment

NEMO-3 was the predecessor to SuperNEMO, which ran from Feb 2003 – Jan 2011.

- Cylindrical design with source foils of different ββ isotopes surrounded by a gas tracker and a calorimeter.
- Employed a 'smoking-gun' approach:
 - Particle ID, event topology reconstruction
 & strong background rejection
 - Compromise on energy resolution
- World's best T_{1/2} measurements of seven 2vββ isotopes (out of only 12 observed):
 ¹⁰⁰Mo, ⁸²Se, ¹⁵⁰Nd, ⁹⁶Zr, ⁴⁸Ca, ¹¹⁶Cd, ¹³⁰Te

19 March 2015

The NEMO-3 Experiment

Some important measurements:

¹⁰⁰**Mo:** $T_{1/2}(2v) = [7.16 \pm 0.01(stat) \pm 0.54(sys)] \times 10^{18} \text{ y}$ $T_{1/2}(0v) > 1.0 \times 10^{24} \text{ y} @ 90\% \text{ CL}$

⁸²Se:
$$T_{1/2}(2v) = [9.6 \pm 0.1(stat) \pm 1.0(sys)] \times 10^{19} y$$

 $T_{1/2}(0v) > 3.2 \times 10^{23} y @ 90\% CL$
19 March 2015 LRT2015

Source foil: 10kg of different $\beta\beta$ isotopes

Tracker: Drift chamber with 6180 vertical cells in He, Ar, alcohol & water.

Calorimeter: 1940 PMTs & plastic scintillator blocks

Shielding: Wood, iron & borated water to stop different external backgrounds

SuperNEMO Schedule

Flow-through Efficiency: ²¹⁴Po Rate

Flow-through Calibration

Detection Efficiency Calibration

LRT2015

This result is comparable to the previous calibration result;

Po214 = 31.5 ± 1.3%

19 March 2015

Last calibrated over 1 year ago with a different HV unit. Repeated using helium as the carrier gas;

Po214 = 31.6 ± 1.6%

Po218 = 27.1 ± 1.4%

