

 222 Rn emanation based material measurement and selection for the SuperNEMO $ov_2\beta$ experiment

<u>C.Cerna</u>, B. Soulé, F.Perrot on behalf of the SuperNEMO collaboration

LRT2015, 18-20 March 2015, Washington University, Seattle

- * SuperNEMO $0v_2\beta$ experiment
 - * Physics goal, background Requirement & construction status
 - * Low background global strategy
- * Large samples emanation setup facility
- * Dedicated studies :
 - * Photomultipliers radiopurity
 - * Aluminized mylar ²²²Rn emanation qualification

SuperNemo

A 🖬 💥 📑 💌 🖬 🖬	💽 🛛 Phase 1	Phase 2
Mass	7kg	up to 100kg
lsotope	⁸² Se, ¹⁵⁰ Nd	⁸² Se, ¹⁵⁰ Nd, ⁴⁸ Ca
Energy resolution (σ / FWHM) @ 3MeV	1.7 /	4%
Radon in tracker A(²²² Rn)	0.15 mE	3q/m³
Source contamination	ightarrow See talk of Dr. X.Saraz	in yesterday
A(²⁰⁸ TI)	< 2µB	q/kg
<i>A</i> (²¹⁴ Bi)	< 10µB	lq/kg
Background index	5 × 1	0 ⁻⁵
Cts•keV ⁻¹ •kg ⁻¹ •y ⁻¹	-	R.O.I. [2.8-3.1 MeV]
Sensitivity		
$\mathcal{T}^{ov}{}_{\mathcal{V}}$	> 6 . 5 × 10 ²⁴ y	> 10 ²⁶ y
<m.,></m.,>	<0.20 – 0.40 eV	<0.04 – 0.10 eV

- Direct reconstruction of the 2e- cinematic
 - Individual electrons energies
 - ➤ Time of flight
 - Curvature in magnetic field
 - Emission vertex and angle
- Modest energy resolution and efficiency
- Background for the ov2β equivalent to the best calorimeter experiments

A particle physicist's nuclear physics experiment

LRT2015, 18-20 March 2015, Seattle

SuperNemo

🚅 💥 📕 💽 🖿 🖉	🚦 🐼 🔹 Phase 1	Phase 2	
Mass	7kg	up to 100kg	
Isotope	⁸² Se, ¹⁵⁰ Nd	⁸² Se, ¹⁵⁰ Nd, ⁴⁸ Ca	
Energy resolution (σ / FWHM) @ 3MeV	1.7 /	4%	
Radon in tracker $\mathcal{A}(^{222}Rn)$	0.15 m	Bq/m³	
Source contamination	\rightarrow See talk of Dr. X.Sara:	izin yesterday	All Children poly
А(²¹⁴ Ві)	ح 2μB ۲0μE <	Bq/kg	
Background index	5 × 1	10 ⁻⁵	Demonst
Cts•keV ⁻¹ •kg ⁻¹ •y ⁻¹		R.O.I. [2.8-3.1 MeV]	Liank USM entrance Wood
Sensitivity			Tank
$T^{\dot{o} u}_{} u_2}$	> 6 . 5 × 10 ²⁴ y	> 10 ²⁶ y	
<m,></m,>	<0.20 – 0.40 eV	<0.04 – 0.10 eV	

- > Ultra low background detector
- Modular detector with 3 main components :
 - Central source foil frame : 7 kg of isotope
 - □ Tracking : 2 000 drift chambers
 - □ Calorimeter: 712 scintillators+ PMTs
- Shielded by iron (300 tons) and water
- Major project to be installed @ Modane Underground Laboratory

Construction Installation

Construction in progress in all the involved laboratories
 Installation and commissioning at Modane Underground Laboratory 2015 – 16

Global anti-Rn strategy for SuperNEMO

Goal: reduce and measure the internal ²²²Rn bckg down to 150µBq/m³

 \rightarrow Facilities to measure the radon level in the detector or gases

Several electrostatic detectors

→ Talk today X.Liu

\rightarrow Facilities to select Rn barriers and material of construction

Marseille Rn trap studies → Talk today N.Raymond

cerna@cenbg.in2p3.fr ISENBG

Prague permeability setup → Poster F.Mamedov

During the construction of SuperNEMO Phase 1 we do not only want to qualify small portion of the material batchs, but try to qualify as large number of construction pieces than we can

Iarge emanation chamber

Radon emanate from surfaces, so in order to increase the sensitivity of a qualification setup we need to get as much surface as we can in contact with the setup

→ large emanation chamber

Setup background

Background Stability

cerna@cenbg.in2p3.fr KNBG

LRT2015, 18-20 March 2015, Seattle

- Transfered volume

 1/10 of the emanation
 volume is measured
- Transfer efficiency 70%
- Detection efficiency 35%

When a sample has emanated → check for deviations above that bckg

Focus on 2 particular studies important for SuperNEMO but also interesting for the community

The amount of radon emanation from

- → Low background Photomultipliers
- \rightarrow Aluminized mylar

Low background Photomultipliers

Study of 5" PMT R6594 recovered from NEMO3

Study of 5" PMT R6594 recovered from NEMO3

mBq / PMT	214Bi	208TI ;	# pieces / SNEMO module	Main
5" PMTs R6594	244	14	192	intern
8" PMTs R5912-Modo3	250	80	440	backg

Main source of internal γ background

long-standing belief to be a large contribution of the internal 222Rn of NEMO3 experiment (2.000 PMTs)

Study of 5" PMT R6594

mBq / PMT	214Bi	208Tl #pi	eces / SNEMO module	Main source of
5" PMTs R6594	244	14	192	internal v
8" PMTs R5912-Mod03	250	80	440	background

Study of 5" PMT R6594

But we found only $\mathcal{A}(^{222}Rn) < 120\mu Bq/PMT (95\% C.L.)$ $\mathcal{E}(^{222}Rn) < 22 \mu Bq/d/PMT (95\% C.L.)$

\rightarrow PMTs are emanating much less than we thought !

→ Consequences on Rn tightness strategy in SuperNEMO Need to complete this study with other PMT glass

Aluminized Mylar

Aluminized mylar study

	mBq / kg	214Bi	208TI
One side aluminized	NEMO 3 batch	2.6 ± 1.3	0.5 ± 0.2
6µm mylar	New batch	55 ± 3	1.7 ± 0.7

SuperNEMO Phase 1 Calorimeter we use **6kg of mylar** → Totaly acceptable from gamma bckg point of view for SuperNEMO (3-5% of internal bckg)

6kg mylar ≈ 700 m² that can emanate from both surfaces

(.p.) N

35

30

Aluminized mylar study

NEMO3 Mylar

Det. backgr.4.139 ± 0.585

27

30.42 / 25

 22.92 ± 2.55

Entries

 χ^2 / ndf

N (t0)

Data

Bcka

N (.d⁻¹)

30

25

27

34.5/24

 34.82 ± 2.84

6 µm 1x Mylar

Det. backgr.1.634 ± 0.443

Entries

 χ^2 / ndf

N (t0)

Data

Fit

Bcka

The two batchs comes from the same provider, same process, same machinery We tested another roll of single side aluminized mylar (12µm thickness) from the same provider : same conclusion

Aluminized mylar study

		²¹⁴ Bi	²⁰⁸ Tl	𝗜 (²²²Rn)	A (222Rn)
		mBq/kg	mBq/kg	µBq/m²/d	μBq/m²
1 side aluminized	NEMO 3	2.6 ± 1.3	0.5 ± 0.2	<22	<119
6µm mylar	New 1 side	55 ± 3	1.7 ± 0.7	50 ± 14	280 ± 80
2 sides aluminized	New 2	67 + 6	<i>c</i> 1 6	< 7 4	<120
6µm mylar	sides	02 ± 0	<1.0	<24	<130
$\rightarrow 42 \text{ m}^2 \text{ of myl}$ $\Rightarrow No \text{ excess } \text{!!!}$ $\mathcal{A}(^{222}\text{Rn}) < 130 \text{ p}$		Ŵ	/hy so?		
£ (²²²Rn) < 2	24 µBq/m²/d				

Aluminized mylar study

	²¹⁴ Bi	²⁰⁸ TI	𝗜(²²²Rn)	A (222Rn)
	mBq/kg	mBq/kg	µBq/m²/d	µBq/m²
1 side aluminized NEMO 3	2.6 ± 1.3	0.5 ± 0.2	<22	<119
6µm mylar New 1 sic	le 55 ± 3	1.7 ± 0.7	50 ± 14	280 ± 80
2 sides aluminized New 2	(z) + (z)	14 C		(120
6µm mylar sides	62±6	<1.0	<24	<130

<u>Why so?</u>

- Several authors* estimate the diffusion
 length of ²²²Rn through mylar to about
 100-1000µm >> 6µm mylar thickness
- $\mathcal{A}(^{214}\text{Bi}) = 55 \text{ mBq/kg } \Rightarrow \mathcal{A}(^{222}\text{Rn}) 460 \mu \text{Bq/m}^2$ If 100% of the Rn emanate
- Only about half of that is observed
- And while twice aluminized, none of that is seen

\rightarrow The 400Å Al coating stop the Rn \rightarrow One should take advantage of that

* J.Bigu, E.D. Hallman & L.Kendrick / Elliot lake laboratory / 1991
 F. Mamedov, P.Cermak, K. Smolek & I.Stekl / CTU Prague / 2011

Summary

- SuperNEMO Phase 1 in construction. Installation started.
- Requirements in terms of ²²²Rn very strong : 0.15 mBq/m³ into the tracker and around the ββ sources
- → Need for a dedicated material qualification setup able to measure:
 - large number of pieces
 - Large material surfaces
- Dedicated studies have been conducted
 - PMT emanation
 - \rightarrow glass almost not emanate
 - Aluminized mylar
 - \rightarrow whatever is in emanate
 - \rightarrow Al coating blocks the Rn

• A lot of critical material of construction have been measured cerna@cenbg.in2p3.fr INBG LRT2015, 18-20 March 2015, Seattle 22

